1.) scale of the chart
2.) Notes of the chart
3.) chart symbols
4.) chart corrections
5.) GPS positions
6.) radar fixes
7.) Visual fixtures and position circle and position line
Answer:
the atomic packing factor of Sn is 0.24
Explanation:
a = b = 5.83A and c = 3.18A.
Volume of unit cell = a²c
= (5.83)² * 3.18 * 10⁻²⁴ cm³
= 1.08 * 10⁻²²cm³
Volume of atoms =
(∴ BCC, effective number of atom is 2)
Volume of atoms =
= 2.55*10⁻²³cm³
<h3>therefore, the atomic packing factor of Sn is 0.24</h3>
Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule. The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction.
Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you
Answer:
As potassium is larger than sodium, potassium's valence electron is at a greater distance from the attractive nucleus and is so removed more easily than sodium's valence electron. As it is removed more easily, it requires less energy, and can be said to be more reactive.
Explanation:
<em>Hope you're having a splendiferous day</em><em>.</em>
<em>Just a bored kid willing to help...</em>