1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
13

A process engineer performed jar tests for a water in order to determine the optimal pH and dose using alum. A test was conducte

d by first dosing each jar with the same alum dose of 10 mg/L and varying pH in each jar from 5.0 to 7.5 with an increment of 0.5 unit of pH. After the first test, he/she plotted the results of remaining turbidity versus pH and found the optimal pH was 6.25. He/she continuously perform a second set of jar tests by holding the optimal pH of 6.25 constant and varying alum doses from 10 to 15 mg/L. Here are the results:
Results of Jar Tests for raw water at optimal pH of 6.25
Turbidity of raw water = 15 NTU
Alkalinity of raw water = 5 mg/L expressed as CaCO3.
Alum Dose 10 11 12 13 14 15
(mg/L)
Turbidity 5.0 4.6 4.5 3.0 5.0 6.0
Remaining
(NTU)
Determine:
1) Plot turbidity versus dose and find the optimal dose of alum (mg/L) with the water lowest remaining turbidity.
2) The theoretical amount of alkalinity consumed at the optimal dose expressed as CaCO3, mg/L.
3) Compared with the theoretical alkalinity from the above results, is the raw water alkalinity sufficient for the coagulation? If not, what kinds of chemical do you need in order to enhance the alkalinity?

Engineering
1 answer:
IRINA_888 [86]3 years ago
3 0

Answer:

1) 13 mg/liters

2)  72.22 mg/lit

3)  The Alkanity in raw water is not sufficient enough and the kinds of chemicals needed to enhance its acidity are

  • CaO
  • KOH
  • Na2CO3
  • NaOH
  • CO2
  • NaHCO3

Explanation:

1) plot of turbidity versus dose and optimal dose of Alum ( mg/L )

Optimal dose of Alum = 13 mg/liters from the graph attached below

2) Theoretical amount of alkalinity consumed at the optimal dose can be calculated as follows

Alkanity is due to HCO^-_{3}

given optimal dose of Alum = 13 mg/liters for question 1

I mole of alum = 2 moles of AL(OH)3

666 grams of alum = 2*27 = 54 grams of AL(OH)3

hence 1 mole of AL^{+3}  = (13/54 ) mMole / lit

The  moles of HCO3 = 6 * \frac{13}{54}   because 1 mole of Alum reacts with 6 moles of HC03

[HCO3] as CaCO3 = 6 * (13/54) * 50

                               = 72.22 mg/lit (theoretical amount of alkalinity consumed)

3) The Alkanity in raw water is not sufficient enough and the kinds of chemicals needed to enhance its acidity are

  • CaO
  • KOH
  • Na2CO3
  • NaOH
  • CO2
  • NaHCO3

You might be interested in
A surveyor knows an elevation at Catch Basin to be elev=2156.77 ft. The surveyor takes a BS=2.67 ft on a rod at BM Catch Basin a
fenix001 [56]

Answer:

the elevation at point X is 2152.72 ft

Explanation:

given data

elev = 2156.77 ft

BS = 2.67 ft

FS = 6.72 ft

solution

first we get here height of instrument that is

H.I = elev + BS   ..............1

put here value

H.I =  2156.77 ft + 2.67 ft  

H.I = 2159.44 ft

and

Elevation at point (x) will be

point (x)  = H.I - FS   .............2

point (x)  = 2159.44 ft  - 6.72 ft

point (x)  = 2152.72 ft

3 0
3 years ago
Can you solve this question​
Alecsey [184]

Answer:

eojcjksjsososisjsiisisiiaodbjspbcpjsphcpjajosjjs ahahhahahahahahahahahahahahahhhahahahaahahhahahahahaahahahahaha

6 0
3 years ago
Read 2 more answers
It is given that 50 kg/sec of air at 288.2k is iesntropically compressed from 1 to 12 atm. Assuming a calorically perfect gas, d
denis23 [38]

The exit temperature is 586.18K and  compressor input power is 14973.53kW

Data;

  • Mass = 50kg/s
  • T = 288.2K
  • P1 = 1atm
  • P2 = 12 atm

<h3>Exit Temperature </h3>

The exit temperature of the gas can be calculated isentropically as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{y-1}{y}\\ y = 1.4\\ C_p= 1.005 Kj/kg.K\\

Let's substitute the values into the formula

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{y-1}{y} \\\frac{T_2}{288.2} = (\frac{12}{1})^\frac{1.4-1}{1.4} \\ T_2 = 586.18K

The exit temperature is 586.18K

<h3>The Compressor input power</h3>

The compressor input power is calculated as

P= mC_p(T_2-T_1)\\P = 50*1.005*(586.18-288.2)\\P= 14973.53kW

The compressor input power is 14973.53kW

Learn more on exit temperature and compressor input power here;

brainly.com/question/16699941

brainly.com/question/10121263

6 0
2 years ago
It is important to keeo a copy of your written plan and safety record s off-site. True or false
lyudmila [28]

Answer:

The answer for the question is true

Explanation:

If you get a virus or get hacked you will still have it saved

8 0
2 years ago
When subject to an unknown torque, the shear stress in a 2 mm thick rectangular tube of dimension 100 mm x 200 mm was found to b
laila [671]

Answer:

The shear stress will be 80 MPa

Explanation:

Here we have;

τ = (T·r)/J

For rectangular tube, we have;

Average shear stress given as follows;

Where;

\tau_{ave} = \frac{T}{2tA_{m}}

A_m = 100 mm × 200 mm = 20000 mm² = 0.02 m²

t = Thickness of the shaft in question = 2 mm = 0.002 m

T = Applied torque

Therefore, 50 MPa = T/(2×0.002×0.02)

T = 50 MPa × 0.00008 m³ = 4000 N·m

Where the dimension is 50 mm × 250 mm, which is 0.05 m × 0.25 m

Therefore, A_m = 0.05 m × 0.25 m = 0.0125 m².

Therefore, from the following average shear stress formula, we have;

\tau_{ave} = \frac{T}{2tA_{m}}

Plugging in then values, gives;

\tau_{ave} = \frac{4000}{2\times 0.002 \times 0.0125} = 80,000,000 Pa

The shear stress will be 80,000,000 Pa or 80 MPa.

7 0
3 years ago
Other questions:
  • Mr.Haussman has 17 students in his class
    14·2 answers
  • JAVA HADOOP MAPREDUCE
    13·1 answer
  • One of our wifi network standards is IEEE 802.11ac. It can run at 6.77 Gbit/s data rate. Calculate the symbol rate for 801.11ac
    5·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is pVn 5 c
    7·1 answer
  • Someone please please help me and explain!! I will give brainliest if right!!!
    9·2 answers
  • What is digital communication?​
    6·1 answer
  • A protocol is a set of rules or procedures, usually written, that should be followed in specific situations. Which of the follow
    12·1 answer
  • What is an example of a traditional career?
    6·2 answers
  • Select the correct answer.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!