1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
13

A process engineer performed jar tests for a water in order to determine the optimal pH and dose using alum. A test was conducte

d by first dosing each jar with the same alum dose of 10 mg/L and varying pH in each jar from 5.0 to 7.5 with an increment of 0.5 unit of pH. After the first test, he/she plotted the results of remaining turbidity versus pH and found the optimal pH was 6.25. He/she continuously perform a second set of jar tests by holding the optimal pH of 6.25 constant and varying alum doses from 10 to 15 mg/L. Here are the results:
Results of Jar Tests for raw water at optimal pH of 6.25
Turbidity of raw water = 15 NTU
Alkalinity of raw water = 5 mg/L expressed as CaCO3.
Alum Dose 10 11 12 13 14 15
(mg/L)
Turbidity 5.0 4.6 4.5 3.0 5.0 6.0
Remaining
(NTU)
Determine:
1) Plot turbidity versus dose and find the optimal dose of alum (mg/L) with the water lowest remaining turbidity.
2) The theoretical amount of alkalinity consumed at the optimal dose expressed as CaCO3, mg/L.
3) Compared with the theoretical alkalinity from the above results, is the raw water alkalinity sufficient for the coagulation? If not, what kinds of chemical do you need in order to enhance the alkalinity?

Engineering
1 answer:
IRINA_888 [86]3 years ago
3 0

Answer:

1) 13 mg/liters

2)  72.22 mg/lit

3)  The Alkanity in raw water is not sufficient enough and the kinds of chemicals needed to enhance its acidity are

  • CaO
  • KOH
  • Na2CO3
  • NaOH
  • CO2
  • NaHCO3

Explanation:

1) plot of turbidity versus dose and optimal dose of Alum ( mg/L )

Optimal dose of Alum = 13 mg/liters from the graph attached below

2) Theoretical amount of alkalinity consumed at the optimal dose can be calculated as follows

Alkanity is due to HCO^-_{3}

given optimal dose of Alum = 13 mg/liters for question 1

I mole of alum = 2 moles of AL(OH)3

666 grams of alum = 2*27 = 54 grams of AL(OH)3

hence 1 mole of AL^{+3}  = (13/54 ) mMole / lit

The  moles of HCO3 = 6 * \frac{13}{54}   because 1 mole of Alum reacts with 6 moles of HC03

[HCO3] as CaCO3 = 6 * (13/54) * 50

                               = 72.22 mg/lit (theoretical amount of alkalinity consumed)

3) The Alkanity in raw water is not sufficient enough and the kinds of chemicals needed to enhance its acidity are

  • CaO
  • KOH
  • Na2CO3
  • NaOH
  • CO2
  • NaHCO3

You might be interested in
A pumping test was made in pervious gravels and sands extending to a depth of 50 ft. ,where a bed of clay was encountered. The n
Vikki [24]

Answer:per minute from the pumping well, a steady state was attained in about 24 hr. The draw-down at a distance of 10 ft. was 5.5 ft. and at 25 ft. was 1.21 ft.

Explanation:

6 0
3 years ago
Koch traded Machine 1 for Machine 2 when the fair market value of both machines was $60,000. Koch originally purchased Machine 1
Mariana [72]

Answer:

Koch's adjusted basis in machine 2 after the exchange is $60,000

Explanation:

given data

fair market value = $60,000

originally purchased Machine 1 = $76,900

Machine 1 adjusted basis = $40,950

Machine 2 seller purchase = $64,050

Machine 2 adjusted basis = $55,950

solution

As he exchanged machine for another at $60,000

and this exchanged in fair market

so adjusted basis =  $50,000

Adjusted basis is the price of the item that affects the factors that are considered price. These factors usually include taxes, depreciation value, and other costs of acquiring and maintaining a given item. Adjusted basis is important so the right amount to sell

Adjusted basis increases when a person deducts expenses from factor taxes and operating statements

so Koch's adjusted basis in machine 2 after the exchange is $60,000

3 0
3 years ago
A program is seeded with 30 faults. During testing, 21 faults are detected, 15 of which are seeded faults and 6 of which are ind
Vesna [10]

Answer:

Estimated number of indigenous faults remaining undetected is 6

Explanation:

The maximum likelihood estimate of indigenous faults is given by,

N_F=n_F\times \frac{N_S}{n_S} here,

n_F = the number of unseeded faults = 6

N_S = number of seeded faults = 30

n_s = number of seeded faults found = 15

So NF will be calculated as,

N_F=6\times \frac{30}{15}=12

And the estimate of faults remaining is  N_F-n_F = 12 - 6 = 6

8 0
3 years ago
Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.
Rufina [12.5K]

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

6 0
3 years ago
Consider a drug-eluting balloon catheter deployed into a blood vessel. The balloon is inflated to perfectly adhere to the vessel
GaryK [48]

Answer:

a)  Cr = Co - Fx / D

b)   ΔC / Δx = ( CR - Cr )  / ( xR - xRo )

Explanation:

A) Derive an expression for the profile c(r) inside the tissue

F = DΔC / X  = D ( Co - Cr ) / X   ------ 1

where : F = flux , D = drug diffusion coefficient

            X = radial distance between Ro and R

Hence : Cr = Co - Fx / D

B) Express the diffusive flux at outer surface of the balloon

Diffusive flux at outer surface =  ΔC / Δx = CR - Cr / xR - xRo

6 0
3 years ago
Other questions:
  • Sometimes, steel studs may not be used on outside walls because they are?
    13·1 answer
  • Water flovs in a pipe of diameter 150 mm. The velocity of the water is measured at a certain spot which reflects the average flo
    13·1 answer
  • Takt time is the rate at which a factory must produce to satisfy the customer's demand. a)- True b)- False
    11·1 answer
  • The 40-ft-long A-36 steel rails on a train track are laid with a small gap between them to allow for thermal expansion. Determin
    8·1 answer
  • Calculate the wire pressure for a round copper bar with an original cross-sectional area of 12.56 mm2 to a 30% reduction of area
    11·1 answer
  • If you are involved in a collision and your vehicle is blocking the flow of traffic, you should
    5·1 answer
  • La Patrulla Fronteriza de los Estados Unidos analiza la compra de un helicóptero nuevo para la vigilancia aérea de la frontera d
    14·1 answer
  • Before turning in a test, it would be best to
    6·2 answers
  • Tech A says that some relays are equipped with a suppression diode in parallel with the winding. Tech B says that some relays ar
    10·1 answer
  • For installations where the nonlinear load is huge, most consulting engineers will specify ____-rated transformers.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!