Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer:
Federal agencies
Explanation:
NIST (National Institute of Standards and Technology) also called between 1901 and 1988 National Bureau of Standards (NBS), it is an agency of the Technology Administration of the United States Department of Commerce. The mission of this institute is to promote innovation and industrial competition in the United States through advances in metrology, standards and technology in ways that improve economic stability and quality of life.
As part of this mission, NIST scientists and engineers continually refine the science of measurement (metrology) by creating precise engineering and manufacturing required for most current technological advances. They are also directly involved in the development and testing of standards made by the private sector and government agencies. The NIST was originally called the National Bureau of Standards (NBS), a name it had from 1901 to 1988. The progress and technological innovation of the United States depends on the abilities of the NIST, especially if we talk about four areas: biotechnology , nanotechnology, information technologies and advanced manufacturing.
Answer:
With increased technological knowledge and consequent decreased factors of ignorance, the structures have less inert masses and therefore less need for such decoration. This is the reason why the modern buildings are plainer and depend upon precision of outline and perfection of finish for their architectural effect.
Answer:

Explanation:
<u>Projectile Motion</u>
In projectile motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration (assuming no friction), and the acceleration in the vertical direction is always the acceleration of gravity. The basic formulas are shown below:

Where
is the angle of launch respect to the positive horizontal direction and Vo is the initial speed.

The horizontal and vertical distances are, respectively:


The total flight time can be found as that when y = 0, i.e. when the object comes back to ground (or launch) level. From the above equation we find

Using this time in the horizontal distance, we find the Range or maximum horizontal distance:

Let's solve for 

This is the general expression to determine the angles at which the projectile can be launched to hit the target. Recall the angle can have to values for fixed positive values of its sine:


Or equivalently:

Given Vo=37 m/s and R=70 m


And
