The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
Energy transfer the energy from the tuning fork is being transferred to the guitar<span />
Steps 1 and 2)
The variables are W = work, P = power, and t = time. In this case, W = 9514 joules and P = 347 watts.
The goal is to solve for the unknown time t.
-----------------------
Step 3)
Since we want to solve for the time, and we have known W and P values, we use the equation t = W/P
-----------------------
Step 4)
t = W/P
t = 9514/347
t = 27.4178674351586
t = 27.4 seconds
-----------------------
Step 5)
The lawn mower ran for about 27.4 seconds. I rounded to three sig figs because this was the lower amount of sig figs when comparing 9514 and 347.
-----------------------
Note: we don't use the mass at all