Answer: 4.98 m/s
Explanation:
You solve these kinetic energy, potential energy problems by using the fact P.E.+ K.E. = a constant as long as friction is ignored.
PEi = 0 in this case
KEi = ½mVi² = PEf+KEf = mghf + ½mVf²
½1210*8.31² = 1210*9.8*2.26 + ½1210*Vf²
½1210*Vf² = ½1210*8.31² - 1210*9.8*2.26
Vf² = 8.31² - 2*9.8*2.26 = 4.98² so Vf = 4.98m/s
If the tension in the rope is 160 n, - 43200 J work doen by the rope on the skier during a forward displacement of 270 m.
Given,
Tension force in the rope is (T) = 160 N
Displacement of the skier (S) = 270 m
The displacement takes place in forward direction while the direction of the tension in the rope is opposite to it.
Therefore, work done by the rope on the skier is,

⇒
Hence work done by the rope is - 43200 J.
Learn more about force problems on
brainly.com/question/26850893
#SPJ4
If one bulb goes out then all the others won't light up because electricity will be cut off. It's a disadvantage because in a parallel circuit if one bulb burns out all the others will still be on because they won't be affected. I hope I've helped you ☺
1.) Pitch
2.)Wavelength
3.)Density/Elastic Properties-b. Two of the above
4.)Liquids
5.) I'm not sure but I'm pretty sure it's the Doppler effect
6.) Frequency Increases