Electricity. I took something like this hope this helps :)
Answer:
Stupid
Explanation:
Because there is never a answer when we are trying to find one
a . true hardness and density are physical properties
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
a) 6076 m
b) 43.33 m/s
c) 68 m/s
Explanation:
(a) If the airplane rounds half the circle in 156s, its displacement is the circle diameter in 156s, or twice the circle's radius
s = 2r = 2* 3.38km = 6.76 km or 6760 m
(b) The average velocity would be displacement over unit of time
v = s/t = 6760 / 156 = 43.33 m/s
(c) The length of the chord it's swept in 156s is half of the circle perimeter
c = πr = π3.38 = 10.62 km or 10620 m
The airplane average speed is its chord length over a unit of time
c / t = c / 156 = 68 m/s