1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
15

In the United States, where can volcanoes be found?

Physics
1 answer:
Sedbober [7]3 years ago
7 0
<span>The volcanoes of USA are located along the west coast, at the subduction of the Pacific and North American tectonic plates. During the 20th century there were only two eruptions in continental USA; Lassen in 1915, and Mt St Helens in 1980. Alaska and Hawaii contain currently active volcanoes. hope this helps:)</span>
You might be interested in
Some people will realize that they are dreaming while the dream is happening this is called
algol [13]

Answer:

C. Lucid Dreaming

6 0
3 years ago
Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant
irakobra [83]

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

6 0
3 years ago
Does this marble have potential energy?<br> 1) no<br> 2)yes
jek_recluse [69]

Answer:

yes

Explanation:

because it has the potential to move

5 0
3 years ago
The force F⃗ pulling the string is constant; therefore the magnitude of the angular acceleration α of the wheel is constant for
abruzzese [7]

Answer:

The answer is "\boxed{\boxed{\omega = \sqrt{\frac{2fd}{kmr^2}}}}"

Explanation:

\to d= r \theta \\\\ \to \theta =\frac{d}{r}\\\\\to \omega^{r} - \omega_{0}^{r} = 2 \alpha \theta\\\\\to \omega^{r} = 2 \alpha \theta    - \omega_{0}^{r} \\\\\to \omega^{r} = 2  (\frac{F}{Kmr}) \frac{d}{r}\\\\\to \omega = \sqrt{\frac{2fd}{kmr^2}}

5 0
3 years ago
Suppose a ball is dropped from shoulder height, falls, makes a perfectly elastic collision with the floor, and rebounds to shoul
Bezzdna [24]

Answer:Same magnitude

Explanation:

When ball is dropped from shoulder height h then velocity at the bottom is given by

v_1=\sqrt{2gh}

if it makes elastic collision then it will acquire the same velocity and riser up to the same height

If m is the mass of ball then impulse imparted is given by

J=m(v_2-v_1)

J=2m\sqrt{2gh}

Thus impulse imparted by gravity and Floor will have same magnitude of impulse but direction will be opposite to each other.

7 0
3 years ago
Other questions:
  • A 2.4 kg box has an initial velocity of 3.6 m/s upward along a plane inclined at 27◦ to the horizontal. The coefficient of kinet
    5·1 answer
  • Steel is made of atoms of iron and carbon. Would iron
    12·2 answers
  • A conductor directly connected to the earth is called a ______.
    11·1 answer
  • You are driving on the interstate and see a sign that says the speed limit is 50 miles per hour.
    9·2 answers
  • A 2500-N net force acting on a 880-kg car accelerates it at a rate of ______ m/s/s
    15·1 answer
  • Plz slv this answer​
    6·1 answer
  • What does temperature measure?
    10·1 answer
  • A driver is traveling along a straight road at the speed limit of 60 mph. After two minutes, she slows at a constant rate to a s
    13·1 answer
  • ITS EASY TRUST ME!!!!
    5·2 answers
  • Considera que las masas de los cuerpos son m1 y m2, y sus velocidades antes del choque v1 y v2. Utiliza la ley de conservación d
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!