Answer:
Current flows across a resistor.
Explanation:
Please mark brainliest and have a great day!
Answer:
F = 5226.6 N
Explanation:
To solve a lever, the rotational equilibrium relation must be used.
We place the reference system on the fulcrum (pivot point) and assume that the positive direction is counterclockwise
F d₁ = W d₂
where F is the applied force, W is the weight to be lifted, d₁ and d₂ are the distances from the fulcrum.
In this case the length of the lever is L = 5m, t the distance desired by the fulcrum from the weight to be lifted is
d₂ = 200 cm = 2 m
therefore the distance to the applied force is
d₁ = L -d₂
d₁ = 5 -2
d₁= 3m
we clear from the equation
F = W d₂ / d₁
W = m g
F = m g d₂ / d₁
we calculate
F = 800 9.8 2/3
F = 5226.6 N
Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.
Answer:
a) 6.95 m/s
b) 1.42 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

a) The vertical speed when it leaves the ground. is 6.95 m/s

Time taken to reach the maximum height is 0.71 seconds

Time taken to reach the ground from the maximum height is 0.71 seconds
b) Time it stayed in the air is 0.71+0.71 = 1.42 seconds