Answer:
Option C is the correct answer.
Explanation:
Considering vertical motion of ball:-
Initial velocity, u = 2 m/s
Acceleration , a = 9.81 m/s²
Displacement, s = 40 m
We have equation of motion s= ut + 0.5 at²
Substituting
s= ut + 0.5 at²
40 = 2 x t + 0.5 x 9.81 x t²
4.9t² + 2t - 40 = 0
t = 2.66 s or t = -3.06 s
So, time is 2.66 s.
Option C is the correct answer.
Answer:
2 they detect radio waves
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
Well i think the answer is impossible to find because there is no picture
Answer:
a) 0.05s
b) 4000N
Explanation:
a)When car is stopped its final velocity become zero
U- 10 m/s
V- 0 m/s
S - 0.25 m
t -?
S = (v+u)*t/2
0.25 =(10+0)*t/2
t = 0.05s
b) If we happened to calculate the avarage force we have to consider about acceleration
V= 0
U = 10
t = 0.05 s
a =?
V = U + at
0 = 10 -a * 0.05
a = 200 m/s2
F = m *a
= 20 * 200
= 4000N