The balanced equation for the above reaction is as follows;
2C₈H₁₈ + 25O₂ ---> 16CO₂ + 18H₂O
stoichiometry of octane to CO₂ is 2:16
number of C₈H₁₈ moles reacted - 191.6 g / 114 g/mol = 1.68 mol
when 2 mol of octane reacts it forms 16 mol of CO₂
therefore when 1.68 mol of octane reacts - it forms 16/2 x 1.68 = 13.45 mol of CO₂
number of CO₂ moles formed - 13.45 mol
therefore mass of CO₂ formed - 13.45 mol x 44 g/mol = 591.8 g
mass of CO₂ formed is 591.8 g
Gray matter hope this helps!
A single-displacement reaction, also known as asingle-replacement reaction, is a type of chemicalreaction<span> where an element reacts with a compound and takes the place of another element in that compound. This type of </span>reaction<span> is typically pictured like this: Here, A replaces B in the compound BC.</span>
Answer:
CH3CH2CH2CH2CH2OH.
Explanation:
Hello.
In this case, since the vapor pressure is known to be the pressure exerted by the gaseous molecules in equilibrium with a liquid, we can infer that the higher the molecule, the lower the vapor pressure because the molecules tend to be help together more strongly and more energy is required to separate them and take them from liquid to gas.
In such a way, since CH3CH2CH2CH2CH2OH is the longest molecule (five carbon atoms) it would be more stable at liquid phase which means that it has less molecules moving to gaseous phase, which is also related with the lowest vapor pressure. Conversely, CH3CH2OH has the highest vapor pressure.
Best regards.