1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
3 years ago
14

A car with mass 950 kg and a speed of 16 m/s approaches an intersection. A 1300 kg minivan traveling at 21 m/s is heading for th

e same intersection in a direction perpendicular to the first car. The car and minivan collide and stick together. Find the speed and direction of the wrecked vehicles just after the collision, assuming external forces can be ignored.
Physics
1 answer:
Alex73 [517]3 years ago
8 0

Answer:

V_f = 13.8863 \angle 60.89\°

Explanation:

Our values are,

m_1 = 950Kg\\v_1 = 16m/s \\m_2 =1300Kg\\v_2 = 21m/s

We have all the values to apply the law of linear momentum, however, it is necessary to define the two lines in which the study will be carried out. Being an intersection the vehicle of mass m_1 approaches through the X axis, while the vehicle of mass m_2 approaches by the y axis. In the collision equation on the X axis, we despise the velocity of object 2, since it does not come in this direction.

m_1v_1=(m_1+m_2)v_fcos\theta

For the particular case on the Y axis, we do the same with the speed of object 1.

m_2v_2=(m_1+m_2)v_fsin\theta

By taking a final velocity as a component, we can obtain the angle between the two by relating the equations through the tangent

Tan\theta = \frac{m_2v_2}{m_1v_1}\\Tan\theta = \frac{1300*21}{950*16}\\\theta = tan^{-1}(1.7960)\\\theta = 60.89\°

Replacing in any of the two functions, given above, we will find the final speed after the collision,

(950)(16)=(950+1300)V_fcos(60.89)

V_f= \frac{(950)(16)}{(950+1300)cos(60.89)}

V_f = 13.8863 \angle 60.89\°

You might be interested in
I. What is the initial velocity of the car?
qaws [65]

Answer:

I. 0 m/s

II. 20 m/s

III. Part BC

Explanation:

I. Determination of the initial velocity.

From the diagram given above,

The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s

II. Determination of the maximum velocity attained.

From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.

III. Determination of the part of the graph that represents zero acceleration.

It important that we know the meaning of zero acceleration.

Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.

From the graph given above, the car has a constant velocity between B and C.

Therefore, part BC illustrates zero acceleration.

6 0
3 years ago
7. Two people are pushing a 40.0kg table across the floor. Person 1 pushes with a force of 490N
artcher [175]

Answer:

20.4 m/s^{2}

Explanation:

To start doing this problem, first draw a free body diagram of the table. My teacher always tells us to do this, and I find that it is very helpful. I have attached a free body diagram to this answer- take a look at it.

First, let us see if Net force = MA. To do that, we need to determine whether the object is at equilibrium horizontally. For an object to be at equilibrium, it either needs to be moving at a constant velocity or not moving at all. Also, if an object is at equilibrium, there will not be any acceleration. But we know that there IS acceleration horizontally, so it cannot be in equilibrium. If it is not in equilibrium, we can use the formula ∑F= ma.

Let us determine the net force. Since the object is moving horizontally, we can ignore the weight and normal force, because they are vertical forces. The only horizontal forces we need to worry about are the applied force and force of friction.

Applied force = 1055 N (490 + 565)

Friction force= Unknown

To find the friction force, use the kinetic friction formula, Friction = μkN

μk is the coefficient, which the problem includes- it is 0.613.

N is the normal force, which we have to find.

*To find the normal force, we have to determine if the object is at equilibrium VERTICALLY. Since it has no acceleration vertically (it's not moving up/down), it is at equilibrium. Now, when an object is at equilibrium in one direction, it means that all the forces in that direction are equal. What are our vertical forces? Weight (mg) and Normal force (N). So it means that the Normal force is equal to the Weight.

Weight = mg = (40)(9.8) = 392 N

Normal force = 392 N

Now, plug it back into the formula (μkN): (0.613)(392) = 240.296 N

Friction = 240.296 N

Now that we know the friction, we can find the horizontal net force. Just subtract the friction force, 240.296 from the applied force, 1055 N

Horizontal Net Force: 814.704 N

Now that we know the net force, plug in the numbers for the formula

∑F= ma.

814.704 = (40.0)(a)

*Divide on both sides)

a = 20.3676 m/s^2

Round it to 3 significant figures, to get:

20.4 m/s^{2}

7 0
3 years ago
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 2.9 m and moment of inertia 900 kg⋅m
Cloud [144]

Explanation:

It is given that,

Mass of person, m = 70 kg

Radius of merry go round, r = 2.9 m

The moment of inertia, I_1=900\ kg.m^2

Initial angular velocity of the platform, \omega=0.95\ rad/s

Part A,

Let \omega_2 is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

I_1\omega_1=I_2\omega_2

Here, I_2=I_1+mr^2

I_1\omega_1=(I_1+mr^2)\omega_2

900\times 0.95=(900+70\times (2.9)^2)\omega_2

Solving the above equation, we get the value as :

\omega_2=0.574\ rad/s

Part B,

The initial rotational kinetic energy is given by :

k_i=\dfrac{1}{2}I_1\omega_1^2

k_i=\dfrac{1}{2}\times 900\times (0.95)^2

k_i=406.12\ rad/s

The final rotational kinetic energy is given by :

k_f=\dfrac{1}{2}(I_1+mr^2)\omega_1^2

k_f=\dfrac{1}{2}\times (900+70\times (2.9)^2)(0.574)^2

k_f=245.24\ rad/s

Hence, this is the required solution.

5 0
3 years ago
Help would be greatly appreciated:) thank you! a pendulum clock is brought to mars. How does the bob move on Mars as compared to
Alborosie
It runs slower <span>as gravity is lower so acceleration due to gravity is smaller</span>
8 0
3 years ago
A crate is sliding on the floor. If there is a total force acting on the crate in the same direction as it is sliding, the crate
Leto [7]

But we do not know whether the force is pushing or pulling (the same direction (both forces are parallel) but: .........[ ]<-F-- or .......[ ]--F-->). I suppose the correct answer is B

7 0
3 years ago
Other questions:
  • Based on the information presented in the graph, what is the velocity of the object?
    11·1 answer
  • An airplane is flying at an altitude of 2,910 m, has mass of 5,320 kg, and experiences a drag force of 530 N. How much force mus
    12·1 answer
  • What atmospheric conditions can cause sound wave refractions similar to those observed in the ocean?
    10·1 answer
  • Describe how absorption and scattering can affect a beam of light
    6·1 answer
  • Balancing Chemical Equations
    5·2 answers
  • A coating of film n=1.33 on glass slabs (n=1.6) is 8.3×10E−5 cm thick. If white light is incident normally, which visible wavele
    11·2 answers
  • A dog walks a distance of 55.5 meters in 120 seconds. What was its speed?
    11·1 answer
  • A fence 8 ft high​ (w) runs parallel to a tall building and is 24 ft​ (d) from it. Find the length​ (L) of the shortest ladder t
    8·1 answer
  • How energy is converted from one form to other
    5·2 answers
  • Whats wavelength? pls explain in 8th grade form pls
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!