Answer:
The appropriate answer is "9.225 g".
Explanation:
Given:
Required level,
= 63 ppm
Initial concentration,
= 22 ppm
Now,
The amount of free SO₂ will be:
= 
= 
= 
The amount of free SO₂ to be added will be:
= 
= 
∵ 1000 mg = 1 g
So,
= 
= 
Thus,
"9.225 g" should be added.
Answer:
(a) False;
(b) False;
(c) False;
(d) True.
Explanation:
(a) When equilibrium is reached, the forward reaction rate becomes equal to the reverse reaction rate, that's why the molarity of each species remains constant, but reactions don't stop.
(b) According to the principle of Le Chatelier, an increase in molarity of either reactants or products would lead to a disturbance of equilibrium. This disturbance would lead to the shift of equilibrium towards the side which would minimize such a disturbance.
(c) Equilibrium constant is only temperature-dependent, it's independent of molarity, pressure, volume etc. of any species present in the reaction.
(d) The greater the initial molarity of reactants, the more products can be formed, e. g., since the ratio of products to reactants should be kept constant, the larger the amount of reactants, the greater the amount of products formed to keep a constant ratio.
Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O
Answer:
Carbon dioxide is a linear covalent molecule.
Carbon dioxide is an acidic oxide and reacts with water to give carbonic acid.
CO 2 + H2O ==> H2CO3
Carbon dioxide reacts with alkalis to give carbonates and bicarbonates.
CO 2 + NaOH ==> NaHCO3 (Sodium BiCarbonate )
NaHCO3 + NaOH ==> Na2CO3 (Sodium Carbonate) + H2O
MASS: generally a measure of an object's resistance to changing its state of motion when a force is applied. It is determined by the strength of its mutual gravitational attraction.
Molecular mass or molecular weight is the mass of a molecule.
Gram formula mass (a.k.a. molar mass) is defined as the atomic mass of one mole of an element, molecular compound or ionic compound. The answer must always be written with the unit g/mol (grams per mole).