Explanation:
In order to go from mass of magnesium to atoms of magnesium, we have to do two things:
Convert mass of Mg to moles of Mg using the molar mass of Mg as a conversion factor
Convert moles of Mg to atoms of Mg using Avogadro's number (6.02×1023) as a conversion factor
Step 1:
Before we start, I should note that the molar mass of Mg is 24.31gmol. We can go from mass to moles using dimensional analysis. The key to dimensional analysis is understanding that the units that you don't need any more cancel out, leaving the units that are desired:
48.60g
×1mol24.31g
=2.00mol
Step 2:
We'll use this relationship:
www.sprinklernewz.uswww.sprinklernewz.us
Using the moles of Mg that we just obtained, we can use Avogrado's number to perform dimensional analysis in order to cancel out units of mol to end up with atoms of Mg:
2.00mol
×6.02×1023atoms1mol
=1.204×1024atoms
Thus, 48.60g of Mg is equivalent to 1.204×1024atoms
Hope this helped :)
<span>On a very small scale, the numbers of particles of each substance in a reaction are represented by the coefficients in the balanced chemical equation describing the reaction. Hope this answers the question. Have a nice day.</span>
Answer:
43.75 g of Nitrogen
Explanation:
We'll begin by calculating the mass of 1 mole of NH₄NO₃. This can be obtained as follow:
Mole of NH₄NO₃ = 1 mole
Molar mass of NH₄NO₃ = 14 + (4×1) + 14 + (3×16)
= 14 + 4 + 14 + 48
= 80 g/mol
Mass of NH₄NO₃ =?
Mass = mole × molar mass
Mass of NH₄NO₃ = 1 × 80 = 80 g
Next, we shall determine the mass of N in 1 mole of NH₄NO₃.
Mass of N in NH₄NO₃ = 2N
= 2 × 14
= 28 g
Thus,
80 g of NH₄NO₃ contains 28 g of N.
Finally, we shall determine the mass of N in 125 g of NH₄NO₃. This can be obtained as follow:
80 g of NH₄NO₃ contains 28 g of N.
Therefore, 125 g of NH₄NO₃ will contain = (125 × 28) / 80 = 43.75 g of N.
Thus, 125 g of NH₄NO₃ contains 43.75 g of Nitrogen
Answer:number 2
Explanation:
the definition of photosynthesis is that carbon dioxide and water changes into sugar and oxygen