Velocity and acceleration are vector quantities whereas speed, temperature and age are not.
<h3>What is a vector quantity?</h3>
Vector is a quantity that has both magnitude and direction and is represented by an arrow whose direction is same as that of the quantity and length is proportional to the quantity's magnitude.
Vector has magnitude and direction but it does not have position. Velocity and acceleration both are vector quantities as they have magnitude and direction.
If the speed of an object remains same but direction changes then the object is accelerating. It is important to remember that acceleration and velocity aren't always in the same direction.
To know more about vector quantity, refer
brainly.com/question/626479
#SPJ1
Answer:
a) solar activity -- sudden eruptions of large bubbles of plasma and magnetic energy
and
d) solar flare -- sudden release of magnetic energy
Explanation:
We can start by eliminating the options that are definitely wrong.
A coronal mass ejection is not a relatively cool spot on surface of the sun, in fact such a spot is a sunspot, while a coronal mass ejection occurs when the magnetic field of the sun emerges as a loop. Thus, both options B and E are incorrect, leaving only A, C, and D. Option C makes no sense, as the sun's gravitational field does not 'churn'. Thus, only options A and D are left. A closer look at A and D reveals they are correct; solar flares are in fact sudden releases of magnetic energy, as seen in this quote from UC Berkeley's website; "Solar flares are caused by sudden changes of strong magnetic fields in the Sun's corona.". And solar activity is a blanket term for the effects of eruptions of plasma and magnetic energy from the sun.
Current can flow when the switch is closed
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Fnet=F1+F2 or Fnet=F1-F2
So 400n up - 600n down
Fnet= 400-600= -200N