1 mole of any substance contains Avogadro's number.
So, 1 mole of O2= 6.023x10^23 molecules
3 mole of O2= 6.023x10^23x3 molecules
= 1.8069x10^24 molecules
Each molecule of Oxygen has 2 atoms.
therefore,
1.8069x10^24 molecules= 1.8069x10^24 x 2 atoms
= 3.6138x10^24 atoms.
Data Given:
Time = t = ?
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 107.86/1 = 107.86 g
Amount Deposited = W = 17.3 g
Solution:
According to Faraday's Law,
W = I t e / F
Solving for t,
t = W F / I e
Putting values,
t = (17.3 g × 96500) ÷ (10 A × 107.86 g)
t = 1547.79 s
t = 1.54 × 10³ s
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.