1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
8

X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to

the incident rays, nd (a) the Compton shift at this angle, (b) the energy of the scattered x-ray, and (c) the energy of the recoiling electron.
Physics
2 answers:
Andrei [34K]3 years ago
4 0

Answer:

When scattered rays are detected

(a) the Compton shift at this angle

(b) the energy of the scattered x-ray

(c) the energy of the recoiling electron.

lys-0071 [83]3 years ago
3 0

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

You might be interested in
How long dose long term alcohol abuse affect the liver?
Luda [366]
█ Question <span>█

</span><span>How can long term alcohol abuse affect the liver?

</span>█ Answer <span>█
</span>
Cirrhosis is liver damage from people who do alcohol abuse. The liver will be affected this way. The answer is letter B. 

<span>Hope that helps! ★ <span>If you have further questions about this question or need more help, feel free to comment below or leave me a PM. -UnicornFudge aka Nadia </span></span>
3 0
3 years ago
Read 2 more answers
A cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that
kherson [118]

Answer:

= 7.88 × 10^-12 T

Explanation:

From the above question, we are told that:

Kinetic Energy of the proton is K. E = 10.0 MeV

Step 1

We convert 10.0 MeV to Joules

1 Mev = 1.602 × 10-13 Joules

10.0 MeV = 10.0 × 1.602 × 10^-13 Joules = 1.602 × 10^-12 J

Hence, the Kinectic energy of a proton = 1.602 × 10^-12 J

Step 2

Find the Speed of the Proton

The formula for Kinectic Energy =

K.E = 1/ 2 mv²

Where

m = mass of the proton

v = speed of the proton

K.E of the proton = 1.602 × 10^-12 J

Mass of the proton = 1.6726219 × 10^-27 kilograms

Speed of the proton = ?

1.602 × 10^-12J = 1/2 × 1.6726219 × 10^-27 × v²

1.602 × 10^-12J = 8.3631095 ×10^-28 × v²

v² = 1.602 × 10^-12/8.3631095 ×10^-28

v = √(1.602 × 10^-12/8.3631095 ×10^-28)

v = 43772331.227m/s

v = 4.3772331227 × 10^7m/s

Approximately = 4.4 × 10^7 m/s

Step 3

Find the Magnetic Field of that region of space

The formula for Magnetic Field =

B = m v / q r

We are told that the proton executes a circular orbit, hence,

mv = √2m(KE)

m = Mass of the proton = 1.6726219 × 10^-27 kg

K.E of the proton = 1.602 × 10^-12 J

v = speed of the proton = 4.4 × 10^7 m/s

q = Electric charge = 1.6 × 10^-19 C

r = radius of the orbit = 5.80Ã10^10 m

= 5.8 × 10^10m

Magnetic Field =

=√ (2 × 1.6726219 × 10^-27 kg × 1.602 × 10^-12 J) /( 1.6 × 10^-19 C × 5.80 × 10^10 m)

= 7.88 × 10^-12 T

The magnetic field in that region of space is approximately 7.88 × 10^-12 T

4 0
3 years ago
A 0.3-kg object connected to a light spring with a force constant of 19.3 N/m oscillates on a frictionless horizontal surface. A
Ghella [55]

The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is

<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J

That is,

• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point

• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium

so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.

By the work-energy theorem,

<em>W</em> = ∆<em>K</em> = <em>K</em>

where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So

<em>W</em> = 1/2 <em>mv</em> ²

where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get

<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s

8 0
3 years ago
Two neutral metal spheres on wood stands are touching. A negatively charged rod is held directly above the top of the left spher
FrozenT [24]

Answer: Option (C) is the correct answer.

Explanation:

As we know that metals are able to conduct electricity so, when a negatively charges rod is kept closer to the left sphere then electrons will enter the sphere.

Since, like charges repel each other. Hence, some of the negative changes from the rod will repel the negative charges of left sphere.

As both left and right spheres are touching each other so, the electrons will move towards the right sphere. As a result, there will be too many electrons (negative charge) present on the right sphere and very less electrons present in the left sphere.

Thus, we can conclude that the statement right sphere is negatively charged, another is charged positively, is true.

7 0
3 years ago
Read 2 more answers
a particle moves at a constant speed in a circular path. the instantaneous velocity and instantaneous acceleration vectors are:
Lilit [14]

The instantaneous velocity always tangential to circular path and          instantaneous acceleration always points towards the center of circle.

What is instantaneous?

The definition of instantaneous velocity is the rate of change of location during a time that is virtually zero .The replica was. The definition of instantaneous velocity is the speed of a moving item at a certain instant in time.

The rate of change of location during a relatively brief period of time is known as instantaneous velocity.

In the limit when the time (and thus the displacement) between the two places approaches zero, the instantaneous acceleration is the average acceleration between two points on the route.

so, both of them are perpendicular to each other.

To learn about instantaneous velocity

brainly.com/question/1222392

#SPJ4

8 0
1 year ago
Other questions:
  • A runner runs 4875 ft in 6.85 minutes. what is the runners average speed in miles per hour?
    5·2 answers
  • You place an object 20 cm from a lens and find an image on the opposite side 30 cm from the lens. You calculate a focal length o
    12·1 answer
  • How many nanoseconds does it take light to travel 2.50 feet in a vacuum
    15·1 answer
  • A pulse moving to the right along the x axis is represented by the function of
    9·1 answer
  • A 51-kg woman runs up a vertical flight of stairs in 5.0 s. Her net upward displacement is 5.0 m. Approximately, what average po
    15·1 answer
  • Is 51/17 a rational number
    8·2 answers
  • The period of a simple pendulum, defined as the time necessary for one complete oscillation, is measured in time units and is gi
    14·1 answer
  • What is a gravitational force...??
    5·1 answer
  • Which image illustrates the interaction of a light wave with a mirror?
    6·2 answers
  • A uniform metal meter-stick is balanced with a 1.0 kg rock attached to the left end of the stick. If the support is located 0.25
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!