1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
8

X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to

the incident rays, nd (a) the Compton shift at this angle, (b) the energy of the scattered x-ray, and (c) the energy of the recoiling electron.
Physics
2 answers:
Andrei [34K]3 years ago
4 0

Answer:

When scattered rays are detected

(a) the Compton shift at this angle

(b) the energy of the scattered x-ray

(c) the energy of the recoiling electron.

lys-0071 [83]3 years ago
3 0

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

You might be interested in
Examine the scenario. Object A has 5 protons and 5 electrons. Object B has 5 protons and 7 electrons. Which option most accurate
Travka [436]
<span>Last choice on the list:
Object A has a net charge of 0 because the positive and negative
charges are balanced.
Object B has a net charge of –2 because there is an imbalance of
charged particles (2 more negative electrons than positive protons).</span>
4 0
3 years ago
If the mass of an object is 44 kilograms and its velocity is 10 meters per second east, how much Kinetic Energy does it have?
olya-2409 [2.1K]
Given: Mass m = 44 Kg;      Velocity v = 10 m/s

Required: Kinetic energy K.E = ?

Formula: K.E = 1/2 mv²

               K.E 1/2 (44 Kg)(10 m/s)²

               K.E = 2,200 Kg.m²/s²

               K.E = 2,200 J Answer is A
8 0
3 years ago
Suppose that an object is moving along a vertical line. Its vertical position is given by the equation L(t) = 2t3 + t2-5t + 1, w
Tatiana [17]

Answer:

The average velocity is

266\frac{m}{s},274\frac{m}{s} and 117\frac{m}{s} respectively.

Explanation:

Let's start writing the vertical position equation :

L(t)=2t^{3}+t^{2}-5t+1

Where distance is measured in meters and time in seconds.

The average velocity is equal to the position variation divided by the time variation.

V_{avg}=\frac{Displacement}{Time} = Δx / Δt = \frac{x2-x1}{t2-t1}

For the first time interval :

t1 = 5 s → t2 = 8 s

The time variation is :

t2-t1=8s-5s=3s

For the position variation we use the vertical position equation :

x2=L(8s)=2.(8)^{3}+8^{2}-5.8+1=1049m

x1=L(5s)=2.(5)^{3}+5^{2}-5.5+1=251m

Δx = x2 - x1 = 1049 m - 251 m = 798 m

The average velocity for this interval is

\frac{798m}{3s}=266\frac{m}{s}

For the second time interval :

t1 = 4 s → t2 = 9 s

x2=L(9s)=2.(9)^{3}+9^{2}-5.9+1=1495m

x1=L(4s)=2.(4)^{3}+4^{2}-5.4+1=125m

Δx = x2 - x1 = 1495 m - 125 m = 1370 m

And the time variation is t2 - t1 = 9 s - 4 s = 5 s

The average velocity for this interval is :

\frac{1370m}{5s}=274\frac{m}{s}

Finally for the third time interval :

t1 = 1 s → t2 = 7 s

The time variation is t2 - t1 = 7 s - 1 s = 6 s

Then

x2=L(7s)=2.(7)^{3}+7^{2}-5.7+1=701m

x1=L(1s)=2.(1)^{3}+1^{2}-5.1+1=-1m

The position variation is x2 - x1 = 701 m - (-1 m) = 702 m

The average velocity is

\frac{702m}{6s}=117\frac{m}{s}

5 0
3 years ago
What factors that affect magnetic force
Reil [10]

Answer:

Strong electrical currents in close proximity to the magnet.

Other magnets in close proximity to the magnet.

Neo magnets will corrode in high humidity environments unless they have a protective coating.

Explanation: Heat radiation

7 0
3 years ago
Read 2 more answers
How does air resistance affect how fast a feather falls?
Korvikt [17]

Answer: Ain't its because how light the feather is ? It's not as heavy.

Explanation: With air resistance, acceleration throughout a fall gets less than gravity (g) because air resistance affects the movement of the falling object by slowing it down. ... Usually, resistance is not very high at low speed or for small or sharp objects (Google Source if needed to prove yours answer)

6 0
3 years ago
Other questions:
  • Read the sentence.
    8·2 answers
  • Calculate the frequency of visible light having a wavelength of 410 nm
    13·1 answer
  • Give one example in which both physical and chemical changes takes places ​
    6·2 answers
  • What is the smallest particle that can completely represent water?
    15·2 answers
  • Which of the following statements is true vibrations ?
    5·1 answer
  • 39. I also use it when I do the homework. (par 1 line 3).
    15·2 answers
  • TWO forces, one of 12N and another or 24N
    7·1 answer
  • A tennis ball and a solid steel ball of the same diameter are dropped at the same time. Ignoring the air resistance effects, whi
    15·1 answer
  • Example of kinetic energey
    11·2 answers
  • List two of the number of strategies you have learned
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!