Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Answer: An IR remote (also called a transmitter) uses light to carry signals from the remote to the device so it can be controlled. It emits pulses of invisible infrared light that correspond to specific binary codes. These codes represent commands, such as power on, volume up, or channel down.
Explanation:
Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
<h3>The answer is option B</h3>
Explanation:
The wavelength of a wave can be found by using the formula

where
c is the speed of the wave
f is the frequency
From the question
c = 343 m/s
f = 466 Hz
We have

We have the final answer as
<h3>0.74 m</h3>
Hope this helps you
Let's choose the "east" direction as positive x-direction. The new velocity of the jet is the vector sum of two velocities: the initial velocity of the jet, which is
along the x-direction
in a direction
north of east.
To find the resultant, we must resolve both vectors on the x- and y- axis:




So, the components of the resultant velocity in the two directions are


So the new speed of the aircraft is:
