This problem is looking for the minimum value of μs that is
necessary to achieve the record time. To solve this problem:
Assuming the front wheels are off the ground for the entire
¼ mile = 402.3 m, the acceleration a = µs·9.8 m/s².
For a constant acceleration, distance = 402.3
m = 1/2at^2 = 804.6 m / (4.43 s)^2 = a = µs·9.8 m/s^2
µs = 804.6 m / (4.43s)^2 / 9.8 m/s^2 = 4.18
The Himalayan Mountains formed at a convergence plate boundary between the Eurasian plate and the Indian plate.
The answer is it increases the amount of solar
radiation that is redirected into space. Most of the particles emitted
from volcanoes cool the earth by covering entering solar radiation. The cooling
result can last for months to years contingent on the features of the eruption.
Answer:
The strength of the magnetic field that the line produces is
.
Explanation:
From Biot-Savart law, the equation to determine the strength of the magnetic field for any straight wire can be deduced:
(1)
Where
is the permiability constant, I is the current and r is the distance from the wire.
Notice that it is necessary to express the current, I, from kiloampere to ampere.
⇒ 
Finally, equation 1 can be used:
Hence, the strength of the magnetic field that the line produces is
.