The initial height of the first body is given by:

where
g is the gravitational acceleration
t is the time it takes for the body to reach the ground
Substituting t=1 s, we find

The second body takes takes t=2 s to reach the ground, so it was located at an initial height of

The second body started its fall 1 second before the first body, therefore when the second body started its fall, the first body was located at its initial height, i.e. at 4.9 m from the ground.
The statement that can be used to answer this question is:
"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."
The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.
Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.
Answer:
(a) and (b)
Explanation:
Energy is the capacity to do work, and exists in various forms. These forms can be converted one to another by the use of appropriate means. Some examples are sound, mechanical, solar, light, which causes the sensation of vision, etc. energy is measured in Joules (J).
The rate of transfer of energy is called power.
i.e Power = 
It is measured in Watts (W).
When a white light is disperses into its colors, gray and black are not part of the colors. And a black sometimes could be as a result of the absorption of all other colors of light.