Answer:
Heat acclimatization :
It is the biological adaptations or we can say that it coverts according to the present environment.It also reduce the strain and maintain the normal temperature and heart rate.Heat acclimatization also increase the comfort and reduce all the mental strain and also protect out liver ,muscles ,kidneys and brain fro the injury.
<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
Answer:
The student hears the wave that is transmitted by the desk
Explanation:
Mechanical waves need a material medium to be able to be transmitted, in the case of sound waves, one of the most common media is air, but it is also transmitted in other media in this case, stationery is transmitted.
The student hears the wave that is transmitted by the desk
The speed of the wave is proportional to the density of the material, so the wave that the student hears arrives much faster through the desk than through the air
Given:
distance from the projector lens to the image, di
projector lens focal length, f
distance from the transparency to the projector lens, do
thin lens equation: 1/f = 1/di + 1/do
do = 4 inches
di = 8 feet
convert feet to inches, for uniformity.
1 foot = 12 inches
8 feet * 12 inches/ft = 96 inches
1/f = 1/96 inches + 1/4 inches
Adding fractions, denominator must be the same.
1/f = (1/96 * 1/1) + (1/4 * 24/24)
1/f = 1/96 + 24/96
1/f = 25/96
to find the value of f, do cross multiplication
1*96 = f * 25
96 = 25f
96/25 = f
3.84 = f
The focal length of the project lens is 3.84 inches