The wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Answer:
Explanation:
Since, wavelength, frequency and speed of sound waves are related to each other, we can determine a single parameter with the help of other two parameters. So in this case, the frequency of different notes are given along with their common speed. So as the frequency is inversely proportional to the wavelength then in this case, the wavelength of the notes will be maximum for C1 and minimum for 3951.1 Hz.
Wavelength = Speed / Frequency
Wavelength for C1 note = 340 / 32.7 =10.40 m
Similarly, the wavelength for A6 note = 340/1760=0.193 m
And, the wavelength for B7 note = 340/3951.1 = 0.086 m
So, the wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
6: Short way: it cannot be 2.5, 3, or 5 because up to 5 seconds it only has positive velocity so it must be moving forwards.
Long Way: Velocity is in m / s, multiply that by time (s) to get m or displacement. From 0->5 you have a triangle under the curve, (1/2)(5)(20) = 50 meters displaced positive, you need to then look when velocity is under the curve and use a similar equation to solve for the area but make the answer negative. Find the point where it equals -50 and that is where it will have returned.
Answer to 6: B
7. I cannot see the problem enough to answer this. Just know if the line is above 0 velocity is positive so it is moving the direction it started, when it goes below 0 velocity is negative so it is moving opposite direction it started.
8. Accelration is change in velocity. Whatever the slope of the velocity graph is acceleration. At t=8 the slope is 0 because it is not going up or down.
Answer to 8: A
An electron cloud is a visual model of the most probable locations of electrons in a atom. The cloud is denser where you will probably find a electron.
<span>The correct answer is: Towards
Explanation:
Doppler Effect is the apparent change in the frequency of a wave caused by the relative motion between the source of the wave and the observer. As the observer gets closer to the source, that observer will observe or sense the higher frequency of the wave (emitting by the source). Frequency in the case of sound waves is called the "sound's pitch." Therefore, the sound's pitch will increase if the Falcon moves towards the source of the sound. Hence, the correct option is "towards."</span>
Answer:
formula for measuring ocean depth. D = V Times 1/2 T D = Depth (in meters) T= Time (in seconds) V = 1507 m/s (speed of sound in water) Calculate the depth foe each of the times given below, using the formula above.