Oh ya the correct answer for this is B I think because structure B
<span>To answer this problem, we use balancing of forces: x and y components to determine the tension of the rope.
First, the vertical component of tension (Tsin theta) is equal to the weight of the object.
T * sin θ = mg =</span> 1.55 * 9.81 <span>
T * sin θ = 15.2055
Second, the horizontal component of tension (t cos theta) is equal to the force of the wind.
T * cos θ = 13.3
Tan θ = sin </span>θ / cos θ = 15.2055/13.3 = 1.143
we can find θ that is equal to 48.82.
T then is equal to 20.20 N
Explanation:
For equilibrium,
.
So,
= 0

= 
= 705.6 N
Also, for equilibrium
= 0
= 0
or, 
= 
= 176.4 N
Thus, we can conclude that the tension in the first rope is 176.4 N.
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
The field strength needed to produce a 24.0 V peak emf is 0.73T.
To find the answer, we need to know about the expression of emf.
What's the expression of peak emf produced in a rotating rectangular loops?
- The peak emf produced in a rotating loops= N×B×A×w
- N= no. of turns of the loop, B= magnetic field, A= area of loop and w= angular frequency
- So, B = emf/(N×A×w)
<h3>What's the magnetic field applied to the loop, when rectangular coil with 300 turns of dimensions 5.00 cm by 5.22 cm rotates at 400 rpm produce a 24.0 V peak emf?</h3>
- N= 300, A= 5cm × 5.22cm = 0.05m × 0.0522m = 0.00261 m²
- Emf= 24V, w= 2π×400 rpm= 2π×(400rps/60) = 42 rad/s
- Now, B= 24/(300×0.00261×42)
B= 24/(300×0.00261×42) = 0.73T
Thus, we can conclude that the magnetic field is 0.73T.
Learn more about the electromagnetic force here:
brainly.com/question/13745767
#SPJ4