W=20 e(-kt)
A. Rearranging gives k= -(ln(w/20)/t
Substituting w= 10 and solving gives k=0.014
B. Using W=20e(-kt). After 0 hours, W=20. After 24 hours, W=14.29g. After 1 week (24x7=168h) W=1.9g
C. Rearranging gives t=-(ln(10/20)/k. Substituting w=1 and solving gives t=214 hours.
D. Differentiating gives dW/ dt = -20ke(-kt). Solving for t=100 gives dW/dt = 0.07g/h. Solving for t=1000 gives 0.0000002g/h
E. dW/dt = -20ke(-kt). But W=20e(-kt) so dW/dt = -kW
Answer:
The mass of a single paper is approximately 0.047 lb/paper which in SI Units is approximately 21.77 g/paper
Explanation:
The given information on the size and the weight of paper are;
The mass of a box of 500 sheets of paper = 24 lb
The number of sheets in the paper = 500 sheets
The dimensions of the paper = 17 in. × 22 in., which is equivalent to 43.18 cm × 55.88 cm
The mass of a single paper = The mass of the box of paper/(The number of sheets of paper present in the box)
The mass of a single paper = 24 lb/500 = 0.047 lb/paper
Given that 1 lb = 453.6 g, we have;
0.047 lb/paper = 0.047 lb/paper×453.6 g/(lb) = 21.77 g/paper
The mass of a single paper = 0.047 lb/paper = 21.77 g/paper.
Answer:
The SI units of the “A” is m (meters)
The SI units of the “B” is m/s^2
Explanation:
Given the distance = d meters.
Time taken to travel = t (seconds)
Function of the distance, d = A + Bt^2
Now we have given the above information and from the given distance function, we have to find the SI units of the A and B. Here, below are the SI units.
Thus, the SI units of the “A” is = m (meters)
The SI units of the “B” is = m/s^2
2. Groups
3.Ion
4.NonPolar
5.Metallic Bond
6.Make up most of the atom's mass
7.Atomic Number
8.Seven
Answer:
that's nice very nice super duper nicer