Answer:
The semi truck travels at an initial speed of 69.545 meters per second downwards.
Explanation:
In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)
(1)
Where:
,
- Masses of the semi truck and the car, measured in kilograms.
,
- Initial velocities of the semi truck and the car, measured in meters per second.
- Final speed of the system after collision, measured in meters per second.
If we know that
,
,
and
, then the initial velocity of the semi truck is:





The semi truck travels at an initial speed of 69.545 meters per second downwards.
Answer:
trigonometry (guessing)
Explanation:
ellipse: is the shape of an orbit : looks like an oval
periapsis : shortest distance between something like the moon and the planet its orbiting around like the earth
parallax is triangulation. like how gps works. looking at a star one day and then looking at it again 6 months later, an astronomer can see a difference in the viewing angle for the star. With trigonometry, the different angles yield a distance. This technique works for stars within about 400 light years of earth
https://science.howstuffworks.com/question224.htm
By comparing the intrinsic brightness to the star's apparent brightness we can calculate the distance of stars
1/r^2 rule states that the apparent brightness of a light source is proportional to the square of its distance.Jan 11, 2022
https://www.space.com/30417-parallax.html
alternative distance measurement for stars used by most astronomers is the parsec. A star with a parallax angle of 1 arcsecond has a distance of 1 parsec, or 1 parsec per arcsecond of parallax, which is about 3.26 light years
blossoms.mit.edu
.
Explanation:
(i)
O is the object and I is the image.
The image formed is enlarged and it is erect. So the magnification will be positive (+) and greater than 1.
Refer above image. 1
(ii)
O is the object and I is the image.
The image formed is diminished and erect. So the magnification will be positive (+) and less than1.
Refer above image. 2
(iii)
The image will be formed as the 2F on the other side of the lens and it will be of same of the object.
Answer:
<em>conservation of momentum and energy using a series of swinging spheres</em>
Answer:
work done is -2.8 × 10⁻⁶ J
Explanation:
Given the data in the question;
mass of the pendulum m = 6 kg
Length of core = 1.7 m
Now, case1, mass is pulled aside a small distance of 7.6 cm and released from rest. so let θ₁ be the angle made by mass with vertical axis.
so, θ₁ = ( 7.6 × 10⁻² m / 1.7 m ) = 0.045 rad
In case2, mass is pulled aside a small distance of 8 cm and released from rest. so let θ₁ be the angle made by mass with vertical axis.
so, θ₂ = ( 8 × 10⁻² m / 1.7 m ) = 0.047 rad.
Now, the required work done will be;



W =
-cosθ ![]^{0.047}_{0.045 }](https://tex.z-dn.net/?f=%5D%5E%7B0.047%7D_%7B0.045%20%7D)
W = 6 × 9.8 × 1.7 × [ cos( 0.047 ) - cos( 0.045 ) ]
W = 6 × 9.8 × 1.7 × [ -2.8 × 10⁻⁸ ]
W = -2.8 × 10⁻⁶ J
Therefore, work done is -2.8 × 10⁻⁶ J