It hasn't moved from its original spot so displacement is 0
Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
This is an example of Uniform Speed
EXPLANATION
Uniform Speed => no change in speed
Uniform Accelerations Speed => There is a change in speed, but the acceleration remains the same.
#LearnWithEXO
First, we will get the resultant force:
The direction of the force due to the person's weight is vertically down.
weight of person = 700 newton
Assume that the force exerted by the arms has a vertically upwards direction.
Force exerted by arms = 2*355 = 710 newtons
Therefore, the resultant force = 710 - 700 = 10 newtons (in the vertically upwards direction)
Now, we will get the mass of the person.
weight = 700 newtons
weight = mass * acceleration due to gravity
700 = 9.8*mass
mass = 71.428 kg
Then we will calculate the acceleration of the resultant force:
Force = mass*acceleration
10 = 71.428*acceleration
acceleration = 0.14 m/sec^2
Finally, we will use the equation of motion to get the final speed of the person.
V^2 = U^2 + 2aS where:
V is the final velocity that we need to calculate
U is the initial velocity = 0 m/sec (person starts at rest)
a is the person's acceleration = 0.14 m/sec^2
S is the distance covered = 25 cm = 0.25 meters
Substitute with the givens in the above equation to get the final speed as follows:
V^2 = U^2 + 2aS
V^2 = (0)^2 + 2(0.14)(0.25)
V^2 = 0.07
V = 0.2645 m/sec
Based on the above calculations:
The person's speed at the given point is 0.2645 m/sec
Answer:
Explanation:
The stunt will likely sustain serious injury in case of concrete blocks because the average force acting on the person will be more because concrete blocks do not squeeze to provide more time for the force to act on the body instead it acts for a small amount of interval.

As impulse is constant so time requires to act force on the body is more as compared to concrete block and thus average force in mattress case is less.