Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.
Answer:
increasing the number of molecules that have sufficient kinetic energy to react.
Explanation:
An increase in temperature affects the reaction rate by increasing the number of molecules that have sufficient kinetic energy to react.
or we say; temperature increase, leads to an increase in the amount of collisions between molecules.
Answer:
FADH₂ → Q coenzyme → Complex III → c cytochrome → Complex IV → O₂
Explanation:
During oxidative phosphorylation, the electrons from NADH and FADH₂ are combined with O₂ and the energy released in the process is used to synthesize ATP from ADP.
The components of the electron transport chain are located in the internal part of the mitochondrial membrane in eukaryotic cells, and in the cell membrane in bacteria. The transporters in the electron transport chain are organized into four complexes in the inner mitochondrial membrane. A fifth complex then couples these reactions to the ATP synthesis.
Complex II receives the electrons from the succinate, which is an intermediary in the Krebs cycle. These electrons are transferred to the FADH₂ and then to the Q coenzyme. This liposoluble molecule will transport the electrons from Complex II to Complex III. In this complex, the electrons are transferred from the <em>b</em> cytochrome to the <em>c</em> cytochrome. This <em>c </em>cytochrome, which is a peripheric membrane protein located in the external part of the inner membrane, then transports the electrons to Complex IV where finally they are transferred to the oxygen.
Protons, the number of protons cannot change or the element will change as well.
Answer:
did you get the answer???
Explanation:
I really need help