Answer:
The degrees of freedom associated with the critical value is 25.
Step-by-step explanation:
The number of values in the final calculation of a statistic that are free to vary is referred to as the degrees of freedom. That is, it is the number of independent ways by which a dynamic system can move, without disrupting any constraint imposed on it.
The degrees of freedom for the t-distribution is obtained by substituting the values of n1 and n2 in the degrees of freedom formula.
Degrees of freedom, df = n1+n2−2
= 15+12−2=27−2=25
Therefore, the degrees of freedom associated with the critical value is 25.
The answer is D, 2,520 cm³.
Julian is 24, Kira is 34. The total of both equals 58.
X^2/(x- 9 = 81/(x - 9)
This is the equation for which you want the solution.
Multiplying both sides of the equation by (x - 9) we get
x^2(x - 9)/(x - 9) = 81(x - 9)/(x - 9)
So the (x - 9) goes out from both the denominator and the numerator and then the simplified equation becomes
x^2 = 81
x ^2 = (9)^2
x = 9
So the value of the unknown variable x comes out to be 9.