The net ionic equation is
Ag⁺(aq) +Cl⁻(aq) → AgCl(s)
<u><em>Explanation</em></u>
AgNO₃ (aq) + KCl (aq)→ AgCl(s) +KNO₃(aq)
from above molecular equation break all soluble electrolyte into ions
Ag⁺(aq) +NO₃⁻ (aq) + K⁺(aq) +Cl⁻(aq) → AgCl (s) + K⁺(aq) + No₃⁻(aq)
cancel the spectator ions in both side of equation =K⁺ and NO₃⁻ ions
The net ionic equation is therefore
= Ag⁺(aq) + Cl⁻(aq) → AgCl(s)
Answer:
2 mol of CO₂
Solution:
The reaction is as follow,
H₂CO + O₂ → CO₂ + H₂O
According to this equation,
1 mole of H₂CO produces = 1 mole of CO₂
So,
2 moles of H₂CO will produce = X moles of CO₂
Solving for X,
X = (2 mol × 1 mol) ÷ 1 mol
X = 2 mol of CO₂
Answer:
I think its true I dont really know
Explanation:
true
Answer:Hola UwU
Most chemical reactions involve the breaking and formation of chemical bonds. It takes energy to break a chemical bond but energy is released when chemical bonds are formed. If more energy is released than consumed, then the chemical reaction evolves heat and is said to be exothermic.
Explanation:Adios~ UnU haha
Answer:

Explanation:
Hello,
For the given chemical reaction:

We first must identify the limiting reactant by computing the reacting moles of Al2S3:

Next, we compute the moles of Al2S3 that are consumed by 2.50 of H2O via the 1:6 mole ratio between them:

Thus, we notice that there are more available Al2S3 than consumed, for that reason it is in excess and water is the limiting, therefore, we can compute the theoretical yield of Al(OH)3 via the 2:1 molar ratio between it and Al2S3 with the limiting amount:

Finally, we compute the percent yield with the obtained 2.10 g:

Best regards.