Absorbed photon energy
Ea = hc/λ.. (Planck's equation)
Ea = hc / 92.05^-9m
<span>Energy emitted
Ee = hc/ 1736^-9m </span>
Energy retained ..
∆E = Ea - Ee = hc(1/92.05<span>^-9 - 1/1736^-9) </span>
<span>∆E = (6.625^-34)(3.0^8) (1.028^7)
∆E = 2.04^-18 J </span>
<span>Converting J to eV (1.60^-19 J/eV)
∆E = 2.04^-18 / 1.60^-19
∆E = 12.70 eV </span>
<span>Ground state (n=1) energy for Hydrogen = - 13.60eV </span>
<span>New energy state = (-13.60 + 12.70)eV = -0.85 eV </span>
<span>Energy states for Hydrogen
En = - (13.60 / n²) </span>
n² = -13.60 / -0.85 = 16
n = 4
Answer:
Plants need energy from the sun, water from the soil, and carbon from the air to grow. Air is mostly made of nitrogen, oxygen, and carbon dioxide. So how do plants get the carbon they need to grow? They absorb carbon dioxide from the air.
please make most brainlyest
Answer: from what i can tell it looks like a heterogeneous mixture
Explanation:
heterogeneous is multiple different components, homogenous includes only the same component
Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.
Answer: The pressure required is 0.474 atm
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
The equation is,

where,
= initial pressure of gas = 1.0 atm
= final pressure of gas = ?
= initial volume of gas = 
= final volume of gas =
(
Now put all the given values in the above equation, we get:


The pressure required is 0.474 atm