Answer:
2NO(g) + O2(g) ---> 2NO2(g)
Explanation:
The mechanism for this reaction involves two elementary reactions in which both are bimolecular as shown below;
NO(g) +O2(g) ----> NO2(g) + O(g)
NO(g) + O(g) ----> NO2(g)
Hence overall balanced reaction equation;
2NO(g) + O2(g) ---> 2NO2(g)
Answer:

Given:
Mass = 14.0 g
Density (
) = 1.38 g/cm³
To Find:
Volume (V)of the plastic used to make water bottle
Explanation:
Formula:

Substituting value of m & density in the formula:


Volume of the plastic used to make water bottle = 10.14 cm³
Answer:
14.8 × 10²³ molecules
Explanation:
Given data:
Mass of sulfuric acid = 240 g
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Number of moles of sulfuric acid
<em>Number of moles = mass/ molar mass</em>
Number of moles = 240 g/ 98 g/mol
Number of moles = 2.45 mol
Number of molecules:
1 mole = 6.022 × 10²³ molecules
2.45 × 6.022 × 10²³ molecules
14.8 × 10²³ molecules
To determine the mass of oxygen per gram of sulfur for sulfur dioxide, we simply obtain the ratio of the mass of oxygen and the mass of sulfur produced from the decomposition of sulfur dioxide. All other values given in the problem statement above are just to confuse us that the question is a difficult one. We do as follows:
mass of oxygen per gram sulfur = 3.45 g / 3.46 g
mass of oxygen per gram sulfur = 0.9971 g O2 / g S
This question is incomplete. Luckily, I found the same problem which is shown in the attached picture. To answer the question, we must know how the size and charge affect the lattice energy. The answer is: lattice energy increases with the increasing charge of the ions, and decreasing radius of the atoms.
<em>Therefore, the ranking would be: A < B < C</em>.