The average thickness of a sheet of the paper is 0.1 mm.
The number of ice blocks that can be stored in the freezer is 80 blocks of ice.
<h3>Average thickness of a sheet of the paper</h3>
The average thickness of a sheet of the paper is calculated as follows;
average thickness = 6 mm/60 sheets = 0.1 mm /sheet
Thus, the average thickness of a sheet of the paper is 0.1 mm.
<h3>Volume of each block of ice</h3>
Volume = 10 cm x 10 cm x 4 cm
Volume = 400 cm³
<h3>Volume of the freezer</h3>
Volume = 40 cm x 40 cm x 20 cm = 32,000 cm³
<h3>Number of ice blocks that can be stored</h3>
n = 32,000 cm³/400 cm³
n = 80 blocks of ice
Thus, the number of ice blocks that can be stored in the freezer is 80 blocks of ice.
Learn more about average thickness here: brainly.com/question/24268651
#SPJ1
Answer:
Your answer should be Incentives
Explanation:
All of the Noble Gases, which are on the right side of the periodic table, have a full outer energy level. The elements that are Noble Gases are the following: <span>Neon Argon Krypton Xenon Radon Ununoctium.
Hope this helps.</span>
Answer: D
Explanation: because doing a yoga desk program is physical activity, 10k steps is pysical activity, riding a bike or walking/running is also physical activity. so it should be D, all of the above.
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s