Answer:
7.5 × 10^3 m/s^2
Explanation:
use the formula that does not have v in it to solve for acceleration.
There are several many equations that are available to relate the distance,
speed, and time of a body moving vertically in gravity. Happily, the only one
I can always remember without looking it up happens to be the right one to
use for this question !
Distance = (1/2) x (gravity) x (time)²
3.8 m = (1/2) x (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² :
(3.8 m) / (4.9 m/sec²) = (time)²
0.7755 sec² = time²
Square root
of each side:
0.88 second = time
Answer:
-2.63 Joules
2.63 Joules
Explanation:
= Initial compression = 5.89 cm
= Final compression = -15.4 cm
k = Spring constant = 260 Nm
Work done by a spring is given by

Work done by the spring is -2.63 Joules.
Change in kinetic energy is given by

Here, it is assumed that change in kinetic energy is zero as velocity and amlitude are not mentioned.
So,

The work done by the applied force is 2.63 Joules.

Maximum height
= (Usinα)^2/2g
(50*0.5)^2/20
25^2/20
625/20
=31.25metres
horizontal distance = Range= [U^2 * sin2α]/g
[50^2 * sin60]/10
2500 * 0.8660/10
2165/10=216.5metres