Answer:
39.7 m
Explanation:
First, we conside only the last second of fall of the body. We can apply the following suvat equation:

where, taking downward as positive direction:
s = 23 m is the displacement of the body
t = 1 s is the time interval considered
is the acceleration
u is the velocity of the body at the beginning of that second
Solving for u, we find:

Now we can call this velocity that we found v,
v = 18 m/s
And we can now consider the first part of the fall, where we can apply the following suvat equation:

where
v = 18 m/s
u = 0 (the body falls from rest)
s' is the displacement of the body before the last second
Solving for s',

Therefore, the total heigth of the building is the sum of s and s':
h = s + s' = 23 m + 16.7 m = 39.7 m
Answer:
<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>
Not sure but just coming to say good luck and take your time
If you want to change the thermos into an open energy system, you have to remove the lid. Once the lid is removed, the energy is no longer contained inside the thermos bottle. From the bottle, the energy dissipates to the environment.
Answer:
Given: V = 220V, Pmin = 360W, Pmax = 840W
For minimum heating case:
We know that
Pmin = VI
360 = 220 X I
I = 1.63 amp
R = V/I
R = 220/1.63
R = 134.96ohms
For maximum heating case:
We know that
Pmax = VI
840 = 220 X I
I = 3.81 amp
R = V/I
R = 220/3.81
R = 57.74 ohms