Answer:
m1=914.9kg
m2=604.9kg
m3=864.75kg
Explanation
I think we are suppose to find the mass of the crate.
The effective force that moves the body in positive x direction is 3615N
ΣFx = Σma
Then Fx=3615N
Then the masses be m1, m2 and m3
Then,
ΣF = Σ(ma)
3615=(m1+m2+m3)a
Given that a=1.516
The masses are
m1+m2+m3=, 2384.56. Equation 1
Between mass 1 and mass 2 is, F12=1387.
The effective force that pull mass 1 is 1387.
F12=m1 ×a
Therefore,
m1=F12/a
m1=1387/1.516
m1=914.9kg.
The effective force that pulls crate 1 and crate 2 is F23
F23=(m1+m2)a
Therefore
2304=(m1+m2)a
Therefore, since a=1.516
m1+m2=2304/1.516
m1+m2=1519.8kg
Since m1=914.9kg
So, m2=1519.8-m1
m2=1519.8-914.9
m2=604.9kg
Also from equation 1
m1+m2+m3=2384.56
Since m1=914.9kg and m2=604.9kg
Then, m3=2384.56-604.9-914.9
m3=864.75kg
Answer:
a=12 m/s²
Explanation:
Newton's second law of motion states that the acceleration of a body is directly proportional to the force applied and takes place in the direction of force.
This can be summarized as: F=ma, where m is the mass of the object on which force F acts. a is the acceleration due to the force applied.
12N= 1kg×a
a=12N/1kg
a=12m/s²
Explanation:
Uniform velocity is when an object goes an equal amount of space in an equal amount of time whereas non uniform velocity is when the object covers an unequal amount of distance in an equal amount of time.
Answer:
Accretion
Explanation:
Accretion is the process by which there is an accumulation of particles into a bigger object by attracting more mass by gravitational force into an accretion disk. This is one of the first steps in the formation of our solar system. There was a collapse of a gas cloud which resulted in most of the mass collecting in the center leading to the formation of the sun and the rest spread out forming the planets.
Answer:
Other ball's velocity is 10 m/s
Explanation:
We can use conservation of momentum:
