1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
3 years ago
8

How does light determine whether it acts as a particle or a wave?

Physics
2 answers:
pishuonlain [190]3 years ago
5 0
Great question. Albert Einstein proved that light acts as both a particle and a wave in his 1905 paper. This is called wave-particle duality. 
With quantum mechanics, it is easy to prove that light behaves as both a particle and a wave. 
When UV light hits a metal surface, it causes an emission of electrons. This "photoelectric effect" proves how light behaves. 
murzikaleks [220]3 years ago
5 0
Light doesn't need to decide. It simply behaves both ways at the same time.
If you create an experiment that can detect particles and run light through it, the experiment detects particles.
If you build an experiment that can detect waves and run light through it, the experiment detects waves.
Wierd but true.
You might be interested in
What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
Murrr4er [49]

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

3 0
3 years ago
What is the significance of Nucleotides in Chromosomes?​
fgiga [73]

Answer:

it comprises of the DNA/RNA bipolymer molecules

3 0
3 years ago
Read 2 more answers
Three balls are kicked from the ground level at some angles above horizontal with different initial speeds. All three balls reac
Charra [1.4K]

Answer:

Time of flight  A is greatest

Explanation:

Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.

So

H = u₁² sin²θ₁ /2g

H = u₂² sin²θ₂ /2g

H = u₃² sin²θ₃ /2g

On the basis of these equation we can write

u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃

For maximum range we can write

D = u₁² sin2θ₁ /g

1.5 D = u₂² sin2θ₂ / g

2 D =u₃² sin2θ₃ / g

1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁

1.5 = u₂ cosθ₂ /u₁ cosθ₁      ( since , u₁ sinθ₁ =u₂ sinθ₂ )

u₂ cosθ₂ >u₁ cosθ₁

u₂ sinθ₂ < u₁ sinθ₁

2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g

Time of flight B < Time of flight  A

Similarly we can prove

Time of flight C < Time of flight B

Hence Time of flight  A is greatest .

8 0
3 years ago
What is the effect on the force of gravity between two objects if the mass of one object doubles?
Leni [432]
Then the force will also be doubled
6 0
3 years ago
What’s the difference between gravitational force &amp; gravitational field strength?
Zepler [3.9K]

Answer:

Gravitational field strength is the force experienced by a unit mass. Gravitational force is the amount of force acting on a body. It is the product of field strength times the mass under consideration. Gravitational pull is just a more colloquial name for gravitational force.

Explanation:

hope it helps u

5 0
3 years ago
Read 2 more answers
Other questions:
  • Determine the specific heat of iron if 6.1 j of energy are needed to warm 1.50 g of iron from 20.0◦c to 29.0◦c?
    7·1 answer
  • Visible light is a range of _____ energy EM waves in the electromagnetic spectrum that the human eye can see. A. zero B. high C.
    15·2 answers
  • Which is a example of speed? A)Cindy biked westward at 30km/h B)A Rock is the the left of a flowerpot C) A dog runs an average o
    6·2 answers
  • A pair of opposite electric charges of equal magnitude is called a(n)
    5·2 answers
  • Determine the magnitude of the component of F directed along the axis of AB. Set F = 520 N .
    15·2 answers
  • After watching a video about submarines, Jamil wants to learn more about the ocean. which question could be answered through sci
    9·1 answer
  • Momentum of the 2 kg mass moving with velocity 10 m/s is *
    7·1 answer
  • Two cars, a and b, are traveling with the same speed of 40. 0 m/s, each having started from rest. Car a has a mass of 1200 kg, a
    11·1 answer
  • HELP PLS I WILL MARK U BRAINLIEST!!
    10·1 answer
  • The weight of air in a column 1-m2 in cross section that extends from sea level to the top of the atmosphere is?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!