Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Before the skydiver opens the parachute, his velocity would be increasing greatly as much as 9.8 m/s². Opening the parachute would increase the surface area to which air may cause resistance. The skydiver then reaches his terminal velocity.
<span>141.6 million mi,and idk what u mean by how</span>