Boyle Law says “the pressure of fixed amount of ideal gas which is at constant temperature is
inversely proportional to its volume".<span>
P = 1/V
<span>Where, P is pressure of the ideal gas and V is volume of the ideal gas.</span>
<span>For two situations, this law can be added as;
P</span>₁V₁ = P₂V₂<span>
</span><span>14 lb/in² x V₁ = 70 lb/in² x 500 mL</span><span>
</span><span>V₁ =
2500 mL</span><span>
Hence, the needed volume of atmospheric air = 2500
mL
<span>Here, we made two </span>assumptions. They are,
1. The
atmospheric air acts as ideal gas.
2.
Temperature is a constant.
<span>We didn't convert the units to SI units since
converting volume and pressure are products of two numbers, they will cut off. </span></span></span>
Lithium has 1 valence electron available for bonding. So its A.
If the gases are at the same temperature and pressure, the ratio of their effusion rates is directly proportional to the ratio of the square roots of their molar masses:
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
Where
- R₁ and R₂ are the rates of the two gas
- M₁ and M₂ are the molar masses of the two gas
From the Graham's law equation, we can see that the ratio of the rates of effusion of the two gases is directly proportional to the square root of their molar masses
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
As a result, the greatest number of an atom's oxidation state will gradually rise over each period of the periodic table. For instance, the third period's highest value of the oxidation number will fall between 1 and 7.
- The Periodic Table only consistently varies the oxidation numbers of Group 1 and Group 2 metals in their compounds, which are always +1 and +2, respectively.
- Elements have an increasing number of valence electrons that can range from 1 to 8 and move from left to right over time. However, when H or O are added to an element first, the element's valency rises to 4, then falls to zero.
<h3>What causes a rise in the oxidation number?</h3>
An increase in oxidation number results from the loss of negatively charged electrons, whereas a reduction in oxidation number results from the gain of electrons. The result is a rise in the oxidation number of the oxidized element or ion.
<h3>Pattern of the Period 2?</h3>
The trends in Period 2 are significantly more clear-cut. All elements in period 2 experience a decrease in atomic radius, an increase in electronegativity, and an increase in ionization energy as their atomic number rises.
To know more about Periodic table please click here : brainly.com/question/15987580
#SPJ4