Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
Answer:
3 a is the ans i think so ....
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
Explanation:
Tectonic plate interactions are classified into three basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.