Answer: Hope This Helps!
Explanation:
1: Newton’s first law of motion can explain how a magician pulls a tablecloth from underneath the dishes. A negligible horizontal force is applied during the process. As per Newton’s first law of motion, the dishes and glasses remain in their state of motion (rest); as a result, they remain undisturbed.
2: Newton's First Law of Motion is defined as "An object at rest and an object in motion will stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force."In soccer, when the soccer ball is in the soccer field and it is not moving, that means that it is at rest and there is no force acting upon it. When there is a person that is ready to play soccer and wants to kick the ball and play, then the unbalanced force would be the power from the person's foot.
3: Newtons third law can explain, as the cannonball is pushed forwards by the expanding high-pressure gases created by the exploding gunpowder, it pushes back on these gases. The gases push back on the cannon itself, causing it to roll backwards. Alternative answer: the cannon pushes forward on the cannonball. the reaction force is the cannonball pushing backwards on the cannon.
The refraction of light makes a swimming pool seem <u>shallower</u>.
The swimming pool seems shallower because the rays of light coming from the bottom of the pool do not come with a straight path. The path of light is straight as long as it is in the water.
When lights come out of the water into the air it bents downwards. This bending is called refraction.
Refraction forms a virtual image of the pool and it seems shallower than it actually is to the observer. This only happens when light travels from one transparent medium into another having lower density.
If you need to learn more about why a swimming pool appears <u>shallower</u>, click here
https://brainly.in/question/7136803?referrer=searchResults
#SPJ4
Answer:
The value of third charge is 0.8μC.
Explanation:
Given that.
Magnitude of net force=4.444 N
According to figure,
Suppose, First charge = 2.4 μC
Second charge = 6.2 μC
Distance r₁ = 9.8 cm
Distance r₂ = 2.1 cm
We need to calculate the value of r
Using Pythagorean theorem

Put the value into the formula


We need to calculate the force
Using formula of force

Force F₁₂,



Force F₂₃,

We need to calculate the value of third charge





Hence, The value of third charge is 0.8μC.
The correct answer as the first one above !
Answer:
241.8 N.
Explanation:
The force on branch provides a reaction to the ape's weight force plus the centripetal force needed to keep the gibbon in a circular motion of radius 0.60 m.
Centripetal force = mv^2/r
F = mg + mv²/r
F = m(g + v²/r)
where,
m = mass
= 9 kg
g = acceleration due to gravity
= 9.8 m/s²
v = 3.2 m/s
r = 0.60 m
F = 9 * (9.8 + 3.2²/0.60)
= 241.8 N.