Height and depth..... for sure....
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
Answer:
I = 0.287 MR²
Explanation:
given,
height of the object = 3.5 m
initial velocity = 0 m/s
final velocity = 7.3 m/s
moment of inertia = ?
Using total conservation of mechanical energy
change in potential energy will be equal to change in KE (rotational) and KE(transnational)
PE = KE(transnational) + KE (rotational)

v = r ω




I = 0.287 MR²
Answer:
A)Object 1 has the greater magnitude of its momentum.
B)The objects 2 have the greater kinetic energy.
Explanation:
For object 1 :
v₁ = v ,m₁ = 2 m
For object 2 :
,m₂=m
We know that linear momentum given as
P = M V
M=Mass , V=Velocity
For object 1 :
P₁ =m₁ v₁
P₁ =2 m v
For object 2


We can say that object 1 have more momentum.
The kinetic energy






Therefore both the object 2 have higher kinetic energy.