Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
Answer:
He could jump 2.6 meters high.
Explanation:
Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.
Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.
When distance<span> is increased the amount of </span>force<span> needed will depend on the </span>mass<span> of the object. </span>
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.
The primary colors of light are red, blue and green.
There are the pigments like yellow, magenta and cyan that are the mixture of two primary colors.
For example, magenta is a mixture of red and blue color. Thus, it reflects the red and blue color. Also, magneta absorbs the green color.
These type of colors that reflects two primary colors and absorb one color are known as secondary pigments.
Hence, 2nd option is the correct answer.