1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
4 years ago
11

The mass of a moving object increases, but its speed stays the same. What happens to the kinetic energy of the object as a resul

t? A.It decreases. B. It increases. C. It remains unchanged. D. It fluctuates up and down.
Physics
2 answers:
Nuetrik [128]4 years ago
8 0

Answer:

B. It increases.

Explanation:

ozzi4 years ago
5 0
The correct answer is 
B It increases.

In fact, the kinetic energy of a moving object is given by
K= \frac{1}{2}mv^2
where m is the mass of the object and v is its speed. We see that the kinetic energy is proportional to the mass and proportional to the square of the speed: in this problem, the speed of the object remains the same, while its mass increases, therefore the kinetic energy will increase as well.
You might be interested in
The French high-speed train travels at 300 km/h. How long
Agata [3.3K]

Answer:

given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs

Explanation:

4 0
3 years ago
I need the solution to this
posledela

Answer:

He could jump 2.6 meters high.

Explanation:

Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

v_0 = \sqrt{2gh}=\sqrt{2\cdot 9.8\frac{m}{s^2}\cdot 1.3m}=5.0\frac{m}{s}

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.

Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

v_0^2 = 2g_{1/2}h\implies \\h = \frac{v_0^2}{2g_{1/2}}=\frac{25\frac{m^2}{s^2}}{2\cdot 4.9\frac{m}{s^2}}=2.6m

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.

6 0
3 years ago
How is distance related to force in this experiment to mass
Elden [556K]
When distance<span> is increased the amount of </span>force<span> needed will depend on the </span>mass<span> of the object. </span>
5 0
3 years ago
A pole AB of length 10.0m and weight 600N has its center of gravity 4.0m from the end A, and lies on horizontal ground .Calculat
postnew [5]

Answer:

The force required to begin to lift the pole from the end 'A' is 240 N

Explanation:

The given parameters for the pole AB are;

The length of the pole, l = 10.0 m

The weight of the pole, W = 600 N ↓

The distance of the center of gravity of the pole from the side 'A' = 4.0 m

Let 'F_A' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive

For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have

F_A × 10.0 m - W × 4.0 m = 0

∴ F_A × 10.0 m = W × 4.0 m = 600 N × 4.0 m

F_A × 10.0 m = 600 N × 4.0 m

∴  F_A = 600 N × 4.0 m/(10.0 m) = 240 N

The force required to begin to lift the pole from the end 'A', F_A = 240 N.

8 0
3 years ago
Which kind of pigment reflects two primary light colors and absorbs one?1) primary pigment2) secondary pigment3) complementary p
weqwewe [10]

The primary colors of light are red, blue and green.

There are the pigments like yellow, magenta and cyan that are the mixture of two primary colors.

For example, magenta is a mixture of red and blue color. Thus, it reflects the red and blue color. Also, magneta absorbs the green color.

These type of colors that reflects two primary colors and absorb one color are known as secondary pigments.

Hence, 2nd option is the correct answer.

8 0
1 year ago
Other questions:
  • A sphere has surface area 1.25 m2, emissivity 1.0, and temperature 100.0°C. What is the rate at which it radiates heat into empt
    8·1 answer
  • If a rock has a mass of 0.15 kg on the moon what will its mass be on earth
    13·1 answer
  • A 4.0-m-diameter playground merry-go-round, with a moment of inertia of
    7·1 answer
  • (a) A novelty clock has a 0.0100-kg-mass object bouncing on a spring that has a force constant of 1.25 N/ m. What is the maximum
    14·1 answer
  • The Doppler effect causes sounds moving toward an observer to sound _____.
    7·2 answers
  • Help please this is important!
    6·1 answer
  • Which has more energy, a photon of ultraviolet radiation or a photon of yellow light?
    8·1 answer
  • A piece of metal has a mass of 10g and a mass of 2cm
    12·1 answer
  • A young man exerted a force of 9,000 N on a stalled car but was unable to move it. How much work was done?
    14·1 answer
  • Can someone please answer this, ill give you brainliest and your getting 100 points.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!