Answer:
125.66 R/s
Explanation:
First 1200 r / min = 20 r/sec
20 r/s * 2pi Radians / r = 40 pi Radians / sec = 125.66 R/s
Answer:
-5.24 m/s
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
Explanation:
Hi!
We can solve this problem considering each player as a point particle and taking into account the conservation of linear momentum.
Since the 99.8 kg player is moving towards the 77.8kg, the initial total momentum is:
m1*v1_i + m2*v2_i = (77.8kg)(8.1 m/s) - (99.8kg)(6.9 m/s)
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
The final total momentum is equal to:
m1*v1_f + m2*v2_f = (77.8 kg)v1_f + (99.8 kg)(3.5 m/s)
The conservation of momentu tell us that:
m1v1_i + m2v2_i = m1v1_f + m2v2_f
Therefore:
v1_f =v1_i + (m2/m1)*(v2_i-v2_f)
v1_f = 8.1 m/s + (99.8 / 77.8) * (-6.9 - 3.5 m/s)
<u>v1_f = -5.24 m/s</u>
Answer:
<em>At constant mass, the acceleration of an object varies (</em><em>directly</em><em>) with the net external force applied. That is to say, that an object's acceleration increases as the force applied is (</em><em>increased</em><em>), but its acceleration decreases if the force applied is (</em><em>decreased</em><em>).</em>
Explanation:
<u>Mechanical Force
</u>
According to the second Newton's law, the acceleration of an object varies directly proportional to the external net force applied and inversely proportional to the mass of the object.
If the mass is constant, then the acceleration will vary in the same way as the force does.
Completing the sentences:
At constant mass, the acceleration of an object varies (directly) with the net external force applied. That is to say, that an object's acceleration increases as the force applied is (increased), but its acceleration decreases if the force applied is (decreased).
Answer:

Explanation:
Solving Equations by Isolation
We have this equation:

Let's solve it for w step by step. First, we flip both sides

Subtracting 2Lh in both sides

Simplifying

Factoring w

Dividing by (4l+6H)

Simplifying by 2:

Answer:
Kinetic friction is related to the normal force N by f k = μ k N f k = μ k N ; thus, we can find the coefficient of kinetic friction if we can find the normal force on the skier
Explanation: