Answer:
(a) Magnetic moment will be 
(b) Torque will be 
Explanation:
We have given dimension of the rectangular 5.4 cm × 8.5 cm
So area of the rectangular coil 
Current is given as 
Number of turns N = 25
(A) We know that magnetic moment is given by 
(b) Magnetic field is given as B = 0.350 T
We know that torque is given by 
Answer:
The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.
Explanation:
Answer:
B. 17.15 watts
Explanation:
Given that
Time = 10 seconds
height = distance = 0.7 meters
weight of sack = mg = F = 245 newtons
Power = work done/ time taken
Where work done = force × distance
Substituting the given parameters into the formula
Work done = 245 newton × 0.7 meters
Work done = 171.5 J
Recall,
Power = work done/time
Power = 171.5 J ÷ 10
Power = 17.15 watts
Hence the power expended is B. 17.15 watts
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
0.0239364 N
0.0057879 N
Explanation:
= Density of the gas
g = Acceleration due to gravity = 9.81 m/s²
V = Volume
Mass of rubber = 1.5 g
Buoyant force is given by

The buoyant force is 0.0239364 N
Net vertical force is given by

The net vertical force is 0.0057879 N