Answer:
The time taken by the object to reach the ground is 0.58 seconds.
Explanation:
Given that,
An object was released from rest at height of 1.65 m with respect to ground. We need to find the time taken by the object to reach the ground. Initial speed of the object is 0 as it is at rest. It will move downward under the action of gravity such that, the distance covered by the object is given by :




t = 0.58 seconds
So, the time taken by the object to reach the ground is 0.58 seconds. Hence, this is the required solution.
The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly
Answer : Noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Explanation :
Noble gases are the chemical elements that are present in group 18 in the periodic table.
The elements are helium, neon, argon, krypton, xenon and radon.
They are chemically most stable except helium due to having the maximum number of 8 valence electrons can hold their outermost shell that means they have a complete octet.
They are rarely reacts with other elements to form compounds by gaining or losing electrons since they are already chemically stable.
Hence, the noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Answer:
Explanation:
Examples are;
Ultraviolet light from sun.
Heat from a stove burner.
X-ray from an x-ray machine.
Alpha particle emit from a radio active decay of uranium.
Sound waves from your stereo.
Microwave from micro oven.
ultraviolet light from a black light.
Gamma radiations from a supernova.
AND MANY MORE.
Answer:
320 N/m
Explanation:
From Hooke's law, we deduce that
F=kx where F is applied force, k is spring constant and x is extension or compression of spring
Making k the subject of formula then

Conversion
1m equals to 100cm
Xm equals 25 cm
25/100=0.25 m
Substituting 80 N for F and 0.25m for x then

Therefore, the spring constant is equal to 320 N/m