Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm
Speed is the rate of change <span>of distance.</span>
Answer:

Explanation:
= Activation energy = 160 kJ
T = Temperature = 510 K
R = Universal gas constant = 8.314 J/mol K
The fraction of energy is given by

The fraction of energy is 
Answer:
18 km
Explanation:
Convert km/h to m/s:
120 km/h × (1000 m/km) × (1 h / 3600 s) = 33.3 m/s
The time it takes the bomb to travel the 2000 meters is:
2000 m / (33.3 m/s) = 60 s
So it takes 60 seconds for the bomb to fall. The distance it fell is therefore:
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (0 m/s) (60 s) + ½ (10 m/s²) (60 s)²
Δy = 18,000 m
Δy = 18 km