1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
3 years ago
5

During a famous experiment in 1919, Ernest Rutherford shot doubly ionized helium nuclei (also known as alpha particles) at a gol

d foil. He discovered that virtually all of the mass of an atom resides in an extremely compact nucleus. Suppose that during such an experiment, an alpha particle far from the foil has a kinetic energy of 6.0 MeV. If the alpha particle is aimed directly at the gold nucleus, and the only force acting on it is the electric force of repulsion exerted on it by the gold nucleus, how close will it approach the gold nucleus before turning back
Physics
2 answers:
Delvig [45]3 years ago
5 0

Answer:

The answer to the question is;

The alpha particle will approach the gold nucleus up to 3.79 × 10⁻¹⁴ m before turning back.

Explanation:

To solve the question, we note that

There are  79 electrons the gold tom and 2 electrons in the alpha particle which is the helium nuclear

We use the energy conservation principle to obtain

W_{net} = \int\limits^{r_{min}}_{inf} {F_e} \, dr = Δ KE

Where

F_e = Coulomb force

r = Distance of the alpha particle from the gold foil

we get from F = k(Q₁·Q₂)/r²

W_{net} = \int\limits^{r_{min}}_{inf} {F_e} \, dr =(-1)× \int\limits^{r_{min}}_{inf} {\frac{k(2e)(79e)}{r^2} } \, dr

= -158·k·e² × \int\limits^{r_{min}}_{inf} {\frac{dr}{r^2} } \,⇒ -158·k·e²[\frac{1}{r} ]^{r_{min}} _{inf} = \frac{-158*k*e^2}{r_{min}} = -KE₁

or r_{min} = (158·k·e²)/KE₁

Where Δ KE = - KE₁ as KE₂ = 0, particle at rest

Solving gives

r_{min} =\frac{158*(8.988*10^9\frac{Nm^2}{C^2} )(1.602*10^{-19}C)^2}{6Mev*\frac{1.602*10^{-19}J}{eV} *1000000}     = 3.79 × 10⁻¹⁴ m

NISA [10]3 years ago
4 0

Answer:

r = 3.79 10⁻¹⁵ m

Explanation:

For this exercise we can use energy conservation

Starting point. Far from the fixed core

       Em₀ = K

Final point

        Em_{f} = U = k q1 q2 / r

           

      Em₀ =Em_{f}

       K = k q₁ q₂ / r

       r = k q₂ q₂ / K

Data

     K = 6 Mev = 6 106 eV (1.6 10⁻¹⁹ J / 1 eV) = 9.6 10⁻¹³ J

    Helium

    q₁ = 2 e = 2 1.6 10⁻¹⁹ C = 3.2 10⁻¹⁹ C

     Gold

    q2 = 79 e = 79 1.6 10⁻¹⁹ = 126.4 10⁻¹⁹ C

Let's calculate

      r = 8.99 10⁸ 3.2 10⁻¹⁹ 126.4 10⁻¹⁹ / 9.6 10⁻¹³

      r = 3.79 10⁻¹⁵ m

You might be interested in
When all parts of a circuit are composed of conducting materials, the circuit is said to be
Korolek [52]
Closed is the correct answer :)
7 0
4 years ago
Read the paragraph and then answer the question. "A giraffe has to stretch its neck to reach leaves for food. Over time, the gir
dangina [55]

The answer for this question is b, Lamarck!


7 0
3 years ago
Read 2 more answers
An object is placed 10 cm from a convex lens of focal length 20 cm. What is the lateral magnification of the object?.
Airida [17]

Answer:Solution

verified

Verified by Toppr

Given:u=−10cm               f=20cm        (convex lens)

To find: v and image's nature.

Solution: From lens formula

v

1

​

−

u

1

​

=

f

1

​

v

1

​

+

10

1

​

=

20

1

​

Explanation:

7 0
2 years ago
Question 30
stellarik [79]

Answer: 0.69\°

Explanation:

The angular diameter \delta of a spherical object is given by the following formula:

\delta=2 sin^{-1}(\frac{d}{2D})

Where:

d=16 m is the actual diameter

D=1338 m is the distance to the spherical object

Hence:

\delta=2 sin^{-1}(\frac{16 m}{2(1338 m)})

\delta=0.685\° \approx 0.69\° This is the angular diameter

3 0
3 years ago
Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
netineya [11]

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

6 0
3 years ago
Other questions:
  • The liquid in the open-tube manometer in Fig. 12.8a is mercury, y1 = 3.00 cm, and y2 = 7.00 cm. Atmospheric pressure is 980 mill
    8·1 answer
  • 7. What major disaster followed the comet of 1664?
    14·1 answer
  • What does it mean to dissolve something
    8·2 answers
  • A lunar lander is descending toward the moon's surface. Until the lander reaches the surface, its height above the surface is gi
    6·1 answer
  • As you move faster does the force of gravity increase or decrease?
    7·1 answer
  • Why are Mars and Europa the top targets for the study of astrobiology?
    6·1 answer
  • When cars travel around a banked (curved) road at the optimum angle,the normal reaction force (n) can provide the necessary cent
    5·1 answer
  • If 20N force produces an acceleration of 5ms^-2 In a body then the mass of the body will be:
    8·1 answer
  • What mistake did Farah make in this experiment? Farah conducted the following experiment to check whether fabrics of different c
    8·1 answer
  • What will be the voltage across the bulb if the lamp's power cord is accidentally plugged into a 240 V , 60 Hz outlet
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!