Answer:
70 revolutions
Explanation:
We can start by the time it takes for the driver to come from 22.8m/s to full rest:

The tire angular velocity before stopping is:

Also its angular decceleration:

Using the following equation motion we can findout the angle it makes during the deceleration:

where
= 0 m/s is the final angular velocity of the car when it stops,
= 114rad/s is the initial angular velocity of the car
= 14.75 rad/s2 is the deceleration of the can, and
is the angular distance traveled, which we care looking for:

or 440/2π = 70 revelutions
Answer:B.
Both increase as the mass and velocity increase.
Answer:
i think that the awnsre is d
Here Change in Kinetic Energy
= Work Done by Friction
Therefore, substituting the
given values to the equation, we get
0.5 * m * (vFinal^2 -
vInitial^2) = µ m g * d
Therefore
0.5*( 5.90^2 - Vfinal^2 ) =
0.100*9.8*2.10
Therefore
vfinal = 5.54 m/sec
<span> </span>
Answer:
471 N
Explanation:
Weight is just another word for the force of gravity.
Weight is a force that acts at all times on all objects near Earth. The Earth pulls on all objects with a force of gravity downward toward the center of the Earth (g-9.81 m/s2)
so we can simply say
weight =mass * gravitaitonal acceleraition
= 48 * 9.81
=470.88 N
= 471 N