Part A:
Acceleration can be calculated by dividing the difference of the initial and final velocities by the given time. That is,
a = (Vf - Vi) / t
where a is acceleration,
Vf is final velocity,
Vi is initial velocity, and
t is time
Substituting,
a = (9 m/s - 0 m/s) / 3 s = 3 m/s²
<em>ANSWER: 3 m/s²</em>
Part B:
From Newton's second law of motion, the net force is equal to the product of the mass and acceleration,
F = m x a
where F is force,
m is mass, and
a is acceleration
Substituting,
F = (80 kg) x (3 m/s²) = 240 kg m/s² = 240 N
<em>ANSWER: 240 N </em>
Part C:
The distance that the sprinter travel is calculated through the equation,
d = V₀t + 0.5at²
Substituting,
d = (0 m/s)(3 s) + 0.5(3 m/s²)(3 s)²
d = 13.5 m
<em>ANSWER: d = 13.5 m</em>
The force of static friction keeps a stationary object at rest. Once the force of static friction is overcome, the force of kinetic friction is what slows down a moving object.
Answer:
The "solid force"? ... The direction of the force always seems to be coming out of the solid surface. A direction which is perpendicular to the plane of a surface is said to be normal. The force that a solid surface exerts on anything in the normal direction is called the normal force.
Explanation:
i think i hope this helps
The speed would be in a decimal? Or do you want it in a fraction?
Answer:
a) θ = 2500 radians
b) α = 200 rad/s²
Explanation:
Using equations of motion,
θ = (w - w₀)t/2
θ = angle turned through = ?
w = final angular velocity = 1420 rad/s
w₀ = initial angular velocity = 420
t = time taken = 5s
θ = (1420 - 420) × 5/2 = 2500 rads
Again,
w = w₀ + αt
α = angular accelaration = ?
1420 = 420 + 5α
α = 1000/5 = 200 rad/s²