The standard model of particle physics classifies all known particles and documents three of the fundamental forces. A neutrino is an almost massless sub-atomic particle with no charge that only interacts with matter very weakly. Neutrinos are classified as fermions which means they have half-integer intrinsic spin.
In the diagram, the ship send sound(?) waves to the water, to determine if there is anything there. If there is something like a sunken ship shown in the diagram, the waves return in a shorter time hence you can understand if theres something or now. This is the principle of radars and sonars.
amnesia is the most common illness used in tv an films
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)
Answer:
Explanation:
Speed= distance/time
Or time = distance/speed
According to your question
Speed=15m/s
and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s
D= 1.2km = 1.2×1000m =1200meter
Time = distance/ speed
1200/15 =80second
Or. 1min and 20 sec will be your answer.