Answer:
b. They orbit around the Sun in a counterclockwise direction, when viewed from above the ecliptic plane.
Explanation:
All the objects of the solar system revolve around the Sun in a counterclockwise direction. The comet coming from the Oort's cloud will also follow the same kind of orbit. That is why it can't be a property to distinguish an Oort's cloud comet.
All other properties are correct to identify an Oort's cloud comet as the Oort's cloud is a considered a spherical cloud just outside the Solar system.
 
        
             
        
        
        
Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.
 
        
             
        
        
        
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
 
        
             
        
        
        
Answer:
796.2 m.
Explanation:
A sketch of the given question forms a right angled triangle with two given sides and a non included angle. Applying the appropriate trigonometric function, we have;
Tan θ = 
Let the horizontal distance required be represented by x, so that;
Tan  =
 = 
0.7536 = 
⇒ x = 
       = 796.1783
x = 796.2 m
Thus, the horizontal distance of the point of impact is 796.2 m.