After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.
Answer: A capacitor.
Explanation:
The capacitor is a passive element that is used in electronics to store electrical energy maintaining an electrical field. The simpler case of a capacitor is the parallel plates capacitor.
It consists of two parallel metal plates separated by a distance D, in this case, the air between the plates works as a dielectric, as the plates do not touch each other and are separated by a dielectric, the charge is stored in the surface plates.
There are a lot of other types of capacitors, the most used in actuality may be the cylindrical one, where instead of parallel plates, it uses two concentric cylinders, and the space between the cylinders is filled with a dielectric/insulator.
Answer:
Radians
Explanation:
The angular speed is a measure of the rotation speed of a body. It is defined as the angle rotated by a unit of time. Thus, It refers to the angular displacement per unit time and is designated by the Greek letter
. Its unit in the International System is radian per second (rad / s).
Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
Answer:
If the frequency of the source is increased the current in the circuit will decrease.
Explanation:
The current through the circuit is given as;

Where;
V is the voltage in the AC circuit
Z is the impedance

Where;
R is the resistance
is the inductive reactance
= ωL = 2πfL
where;
L is the inductance
f is the frequency of the source
Finally, the current in the circuit is given as;

From the equation above, an increase in frequency (f) will cause a decrease in current (I).
Therefore, If the frequency of the source is increased the current in the circuit will decrease.