Answer:
Take the measurement of the distance (d) with a meter rule (in meters) and also measure the time (t) of the travel in seconds with a stopwatch.
question: What is the speed of the cart?
Explanation:
The speed of an object in motion is the distance covered by the object with respect to time, that is, the ratio of distance covered to the time taken to reach that distance.
Speed = distance / time
= d (in meters m) / t (in seconds s) = m/s
Answer:
(a) the force is 8.876 N
(b) the magnitude of each charge is 4.085 μC
Explanation:
Part (a)
Given;
coulomb's constant, K = 8.99 x 10⁹ N.m²/C²
distance between two charges, r = 10 cm = 0.1 m
force between the two charges, F = 15 N
when the distance between the charges changes to 13 cm (0.13 m)
force between the two charges, F = ?
Apply Coulomb's law;

Part (b)
the magnitude of each charge, if they have equal magnitude

where;
F is the force between the charges
K is Coulomb's constant
Q is the charge
r is the distance between the charges

Answer:
a) 4 289.8 J
b) 4 289.8 J
c) 6 620.1 N
d) 411 186.3 m/s^2
e) 6 620.1 N
Explanation:
Hi:
a)
The kinetic energy of the bullet is given by the following formula:
K = (1/2) m * v^2
With
m = 16.1 g = 1.61 x 10^-2 kg
v = 730 m/s
K = 4 289.8 J
b)
the work-kinetic energy theorem states that the work done on a system is the same as the differnce in kinetic energy of the same. Since the initial state of the bullet was at zero velocity (it was at rest) Ki = 0, therefore:
W = ΔK = Kf - Ki = 4 289.8 J
c)
The work done by a force is given by the line intergarl of the force along the trayectory of the system (in this case the bullet).
If we consider a constant force (and average net force) directed along the trayectory of the bullet, the work and the force will be realted by:
W = F * L
Where F is the net force and L is the length of the barrel, that is:
F = (4 289.8 J) / (64.8 cm) = (4 289.8 Nm) / (0.648 m) = 6620.1 N
d)
The acceleration can be found dividing the force by the mass:
a = F/m = (6620.1 N) /(16.1 g) = 411 186.3 m/s^2
e)
The force will have a magnitude equal to c) and direction along the barrel towards the exit
Answer:
the answer is
Explanation:
constant acceleration
because when the object's velocity is changing then the object is accelerating or decelerating
as acceleration describe changing of velocity so the answer is constant acceleration
Acceleration is defined as the rate of change of velocity.
Acceleration = (Change in velocity) / time taken
Acceleration = (Final velocity - initial velocity) / time
As the object velocity changes by the same amount in each second, it means the acceleration is constant.
Hope I can help u