Answer:
The speed of James is 0.776 m/s
Explanation:
Step 1: Data given
mass of James = 95.0 kg
mass of Ramon = 67.0 kg
We consider James and Ramon and the rope to a single system. This means that the net external forces on the system = 0
.The momentum = 0, so the sum of the momentum of each part must be 0 in total.
Step 2: Calculate the speed of James
m(james) *v(James) = m(Ramon) * v(Ramon)
with m(James) = the mass of James = 95.0 kg
with v(James) = speed of James = TO BE DETERMINED
with m(Ramon) = mass of Ramon = 67.0 kg
with v(Ramon) = speed of Ramon = 1.10 m/s
v(James) = (m(Ramon) * v(Ramon))/ m(james)
v(James) = (67.0 kg* 1.10 m/s) / 95.0 kg
v(James) = 0.776 m/s
The speed of James is 0.776 m/s
In the first figure, the surface absorbs all colors except for green light, which is reflected: so, the surface will appear as green to our eyes, because green is the only color which is reflected by that surface.
Similarly, in the second figure, the surface absorbs all colors except for blue, and so the surface will appear blue to our eyes.
In the third figure, the surface absorbs all colors, so it will appear black to our eyes (because no colors are reflected, and black=absence of colors).
In the fourth figure, all colors are reflected: this means the surface will appear white to our eyes (white= sum of all colors).
Extracting saltine from the water.
Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .