D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
A. 10 rations = 1 deca-ration.
b. 2000 mockingbirds = 2 x 10³ = 2 kilo-mockingbirds.
c. 10⁻⁵ phones = 1 micro-phones.
d. 10⁻⁹ goats = 1 nano-goats.
e. 1018 miners = 1.018 x 10³ = 1.018 kilo-miners.
Answer:
the total momentum is 8 .2 kg m/s in north direction.
Explanation:
given,
mass(m₁) 3.00 kg, moving north at v₁ = 3.00 m/s
mass(m₂) 4.00 kg, moving south at v₂ = 3.70 m/s
mass(m₃) 7.00 kg, moving north at v₃ = 2.00 m/s
north as the positive axis
south as the negative axis
now
total momentum = m₁v₁ + m₂ v₂ + m₃ v₃
total momentum = 3 x 3 - 4 x 3.7 + 7 x 2
= 9 - 14.8 + 14
= 8 .2 kg m/s
hence, the total momentum is 8 .2 kg m/s in north direction.
I think its a. i am not sure though.