Answer:

Explanation:
given,
length of the ship = 120 m
length of model of the ship = 4 m
Speed at which the ship travels = 70 km/h
speed of model = ?
by using froude's law

for dynamic similarities




hence, the velocity of model will be 12.78 km/h
111.0 because 111.009 rounds off to 111.01, thus rounding again off to 111.0
Answer:
112.58
Explanation:
The Coefficient of Performance of any system is denoted by COP=Q/W, where Q is the useful heat supplied or removed and W is the work required by the system. According to the first law of thermoddynamics Qh= Qc + W, where Qh is the heat transfered to the hot reservoir and Qc is the heat collected from the cold reservoir. Substituting the values for W and apllying the limitation for maximum theoretical efficiency we end up with the eqution shown below.
The Coefficient of Performance of air conditioner or COP is denoted by
COP(cool) = Tc/(Th- Tc)
where Tc: the lowest temperature
Th: the highest temperature
converting the values to Kelvin and adding them in the above equation
COP(cool) = (25+273)/((34+273)-(25+273))
= 298/(307-298)
= 298/9 = 33.11
From the question, it is stated that COP=SEER/3.4
hence, SEER= COP * 3.4
SEER= 33.11 * 3.4 = 112.58

As galáxias são geralmente maiores do que os aglomerados de estrelas. Como disse Geller ~ As galáxias são como as cidades em que vivem os aglomerados de estrelas. As galáxias podem ter cerca de milhares ou mais aglomerados de estrelas ~
I hope it helps ~
T2=r In the form of Kepler's law that can use to relate the period T and radius of the planet in our solar systems
<u>Explanation:</u>
<u>Kepler's third law:</u>
- Kepler's third law states that For all planets, the square of the orbital
period (T) of a planet is proportional to the cube of the average orbital radius (R).
- In simple words T (square) is proportional to the R(cube) T²2 ∝1 R³3
- T2 / R3 = constant = 4π ² /GM
where G = 6.67 x 10-11 N-m2 /kg2
M = mass of the foci body