Burning fossil fuels emits a number of air pollutants that are harmful to both the environment and public health. Sulfur dioxide (SO2) emissions, primarily the result of burning coal, contribute to acid rain and the formation of harmful particulate matter.
However, the use of solar panels is environment friendly. Solar power is renewable at absolutely no cost to supply energy infinitely. Also, it is very low maintenance. Once installed, the solar power system can last twenty to thirty years.
Similarly wind (turbines) and water (hydroelectric power plants) are an endless source of energy without negatively affecting the environment.
Answer:
fluorine atoms!!! can you please mark brainliest?
Q = mCΔT
Q is heat in Joules, m is mass, C is the specific heat of water, delta T is the change in temperature
Q = (35g)(4.18)(35 degrees) = 5121 Joules or 5.12 kJ required
Answer:
hydrogen atom when it drops from N 5 to N 2?
so, 275 kJ of energy is released when one mole of electrons "falls" from n = 5 to n = 2. E = hc/λ (this energy corresponds to the energy of one photon; the energy calculated in this problem is for one mole of photons so we will change this after we change the units from kJ to J)
Explanation:
please mark me as brainliest thank you
The Boyle-Mariotte's law or Boyle's law is one of the laws of gases that <u>relates the volume (V) and pressure (P) of a certain amount of gas maintained at constant temperature</u>, as follows:
PV = k
where k is a constant.
We can relate the state of a gas at a specific pressure and volume to another state in which the same gas is at different P and V since the product of both variables is equal to a constant, according to the Boyle's law, which will be the same regardless of the state of the gas. In this way,
P₁V₁ = P₂V₂
Where P₁ and V₁ is the pressure and volume of the gas to a state 1 and P₂ and V₂ is the pressure and volume of the same gas in a state 2.
In this case, in the state 1 the gas occupies a volume V₁ = 100 mL at a pressure of P₁ = 150 kPa. Then, in the state 2 the gas occupies a volume V₂ (that we must calculate through the boyle's law) at a pressure of P₂ = 200 kPa. Substituting these values in the previous equation and clearing V₂, we have,
P₁V₁ = P₂V₂ → V₂ =
→ V₂ = 
→ V₂ = 75 mL
Then, the volume occupied by the gas at 200 kPa is V₂ = 75 mL